Week 1.6 : Uncertainty Propagation
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Background information

Learning Objectives

By the end of this week, you will be able

« To explain how uncertainty propagates through functions

« To apply (linear) propagation laws of mean and variances

- To adopt Monte Carlo simulations for propagating uncertainties

Motivation — Why shall we propagate the uncertainty?

Because for a given stochastic input of a certain transformation, also outputs will be stochastic
but most likely with different characteristics, i.e. a different underlying distribution.
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Content

1. Introduction
2. Transforming random variables
3. Mean and variance propagation laws
1. ...considering linear functions
2. ...considering non-linear functions
4. MC simulations for uncertainty propagation

5. Summary
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Small recap from Week 4 — Univariate distributions

A univariate continuous distribution function only takes a single variable as input, and so it
assigns probability (densities) to this random variable.

Example of Gaussian PDF — see details in ProbObs2009

TU De|ft PDF = Probability Density Function



Small recap from Week 4 — Univariate distributions

A univariate continuous distribution function only takes a single variable as input, and so it
assigns probability (densities) to this random variable.

Mean, variance and higher-order moments

If x is continuous with PDF being f, (x), then
+00

Mean: E{x} £ x = j X fx(x)dx

— 00

+00
Variance: Var{x} & ¢% = J (x — X)? f,(x)dx

0.99 :; E l ,

. N = E{(x - ©)%}

— __ <o\h
Example of Gaussian PDF — see details in ProbObs2009 Un = J (X X) fX (X) dX

—CO
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Small recap from Week 5 — Multivariate distributions

Joint probabilities

A probability distribution related to multiple random variables X, Y, ..., which can be independent
or dependent. If variables are independent, then Pearson’s correlation is zero!

Covariance Cov(X,Y):

- Measure of joint variability of two variables. 0.4

Pearson’s coefficient p: 0.2

- Measure of linear correlation between two variables. ()
—D

]
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Transforming random variables
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The function is

Function inputs: deterministic vs stochastic 90x) = sin(

with x ~ V' (0, 62)

Deterministic case

We take z = g(x), for x being deterministic.
1 1
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Stochastic case

We take z = g(x), for x being random variable.
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0.5
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The function is

Function inputs: deterministic vs stochastic 90x) = sin(

with x ~ V' (0, 0%)

Deterministic case Stochastic case
We take z = g(x), for x being deterministic. We take z = g(x), for x being random variable.
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0 Z ] 0! 0 VA 0
-0.5 . -0.5/ -0.5¢ -0.5
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The function is

Function inputs: deterministic vs stochastic 90x) = sin(

with x ~ V' (0, 62)

Deterministic case

We take z = g(x), for x being deterministic.
1 ‘ 1

0.5 0.5
0 Z 0
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-0 5 0 5 10

Stochastic case

We take z = g(x), for x being random variable.
1 o
0.5 0.5

0 0

-0.5 -0.5

-1

-1
-0 -5 0 5 10
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Some examples from physical problems

« Temperature conversion from Celsius to Fahrenheit
T;=q(T.) = 3T + 32

« Compute the mean of m repeated measurements Y;

X=qY,....Yn) =LYV, » Weeks 7 & 8!

« Subsurface temperature T', as a function of depth Z and surface temperature T}, given a known factor a
TEIQ{TD,Z)ITQ +a-Z

« Wind loading F' on a building as function of area of building face A, wind pressure P, drag coefficient C

F=g(A,P,C)=A-P-C

« Evaporation @) using Bowen Ratio Energy Balance as function of the net radiation R, ground heat flux G, bowen ratio
B

Q — Q{R,G,B) =15

1-B
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What comes 1n, then shall come out

Generic transformations

Distributions of output variables might be often
changed due to a non-linear transformation. SN

)

» Therefore, their PDF & CDF will change!

S~
e

=
8

What about simpler linear transformations?
Let’s see an illustrative example...

%
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Linear transformation

9
Ty 2 q(T) = < T. +32

Example: transformation of units

Temperature measurements are converted from degrees Celsius to Fahrenheit...

- -

/

]
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Linear transformation

9
Ty 2 q(T) = < T. +32

Example: transformation of units

Temperature measurements are converted from degrees Celsius to Fahrenheit...

- What do you notice? Why does the temperature in F° look less accurate?

mm Celsius
0.30 - mm Fahrenheit

0.25 -

2 0.20 -

LA

T 0.15 -

g o
0.10 -

0.05 1

0.00

30 40 50
temperature [°C] or [°F]

]
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Generic CDF transformation of univariate functions

Given Z = g(X), for a generic function g and random variable X, then its CDF is given by

Fy(2) = P(Z < 2) = P(g(X) < 2)

|

Definition of CDF

|

Definition of I,

Definition of Z

where I, = {x € R| g(x) < z}, i.e. all x values that satisfy g(x) < z for a given z.
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Workout example

Linear transformation: z = g(x) = ax + b

Unceertkinty Paopog agation

P g (1)

¢:4(X) ;—;VMNX(Y)
i 2=R(X (X)

K,

- S /[
L R /
ot ‘

TUDelft Any volunteer on the board?



Workout solution /

Linear transformation: z = g(x) = ax + b Case a > 0

We consider three cases:
« Casea>0:

FZ(Z):P(ZSZ>=P<aX+sz>=P(XsZ;b>:Fx(z_b

%
TUDelft



Workout solution

Linear transformation: z = g(x) = ax + b Case a > 0 Case a < 0

We consider three cases:
« Casea>0:

FZ(Z):P(ZSZ)=P<aX+b3z)=P<XsZ_b>=Fx<z_b>

« Casea<0:

FZ(Z)ZP(ZSZ)=P(aX+bSZ)=P<XZZ_b)=1—FX<Z_b>
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Workout solution yd : AN

Linear transformation: z = g(x) = ax + b Case a> 0 Case a < 0 Case g =0

We consider three cases:

« Casea > 0:

) B - z—b\ z—b\ | It looks
FZ(Z)—P(ZSZ)—P(aX+bSZ)—P<XS . >—FX( > familiar. ..

« Casea<0:

FZ(Z)=P(ZSZ)=P(aX+bSZ)=P<XZZ_b)=1_FX<Z—b>

« Casea=0:

1, > b
FZ(Z)=P(ZSZ)={O §<b
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Expectation & Variance propagation laws

In general, computing CDF (or PDF) for arbitrary distribution and/or functions is cumbersome,
therefore we might restrict ourselves to first two moments, i.e. Mean & Variance.

Theorem (Expectation law) RO T T

Proof is rather complicated and not treated
in this course; these expressions holds if

For X € R” being an n-dimensional random vector with continuous PDF fx(x), we consider Z = g(X),
where g : R™ — R™ has continuous first partial derivatives. Then the expectation of Z is

E(Z) - F(g(X)) f a(2) Fx () de ) Random vector with continuous PDF,
-

II) Continuous first partial derivatives.

Corollary (Variance law)
Under the same assumptions, the variance of Z is
Var(Z) = Var(g(X)) = /R [8(x) — nellg(x) — pf Fx(x)dx

where p, = E(g(X)), which is described in the previous Theorem.

TU Delft



Expectation & Variance propagation laws

In general, computing CDF (or PDF) for arbitrary distribution and/or functions is cumbersome,
therefore we might restrict ourselves to first two moments, i.e. Mean & Variance.

Theorem (Expectation law)

For X € R” being an n-dimensional random vector with continuous PDF fx(x), we consider Z = g(X),

where g : R™ — R™ has continuous first partial derivatives. Then the expectation of Z is

B(2) - X)) - [ g@)fx()is

Corollary (Variance law)
Under the same assumptions, the variance of Z is
Var(Z) = Var(g(X)) = /R [8(x) — nellg(x) — pf Fx(x)dx

where p, = E(g(X)), which is described in the previous Theorem.

TU Delft

IMPORTANT NOTE
Proof is rather complicated and not treated
in this course; these expressions holds if

) Random vector with continuous PDF,

II) Continuous first partial derivatives.

Remember, if... .. Xis ...X is not
Gaussian Gaussian

Linear function Z IS Z is not
Z = A-X Gaussian! Gaussian
Non-linear function Z is not Z is not

Z = A(X) Gaussian Gaussian



Gaussian + Linear transformation = again Gaussian!
')

Yy = ax

See Example 3.7 in in ProbObs2009

24



Mean and Variance propagation laws
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Looking at propagating first two moments

What we already know?

Let’s consider a function g: R™ — R given m random variables:
X=q)=ql,Y .., Yn0)

with known mean and covariance matrix for Y given by
E{Y}=pny, Var{Y}=12y

What we look for?

We would like to compute:
Mean Variance

E{X} =pux,  Var{X} =2

%
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Let's start simple... first linear, and then non-linear q(-)



It is time for some
: _ _ board derivations
Linear function of one random variable -

We consider Y € R and X € R given by
X=ql¥Y)=a-Y+c

where
E{Y} =pny, Var{Y}=oy

SOLUTION
We obtain

E{X}=a-E{Y}+c=a-uy+c
Var{X} = a? - Var{Y} = a? - o¢

%
TUDelft



It is time for some
board derlvatlons

Linear function of two random variables

We consider Y € R? and X € R given by
X=CI(Y)=a1'Y1+a2'Y2+C

where
M1 o« _ | of 012
BV} =py = (,.), Var{y} =3y = o3
SOLUTION
We obtain

E{X}=a, - E{Vi} +a,-E{lo}+c=a;-uy taz-pu; +¢

a
Var{X} = (a,,a,) - Var{Y} - (a;) = af0f + as0? + 2a,a,015, o1, = Cov(Yy,Ys)

%
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It is time for some
: _ _ board derivations
Linear function of n random variables T

We consider Y € R" and X € R™ given by
X=q¥)=AY +c

where
E{Y} =py €R",  Var{Y}=Zy € R™"

SOLUTION
We obtain

E{X} = AE{Y} +c
Var{X} = AZ, AT
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It is time for some
: _ _ board derivations
Non-Linear function of one random variable ===l

We consider Y € R and X € R given by

=g =)+ -tz Tt -y
where
E(Y) =gy, Var(t) = of
SOLUTION
We obtain

=0
dq 1d?q 2 ,
E{X} =E{q(V)} = q(uy) + W) t|> 552, 0r | Mean-bias term
Y 1%

dq

2
Var{X} = Var{q(Y)} = (E“‘) oZ + h.o.t.

TWULJOIIL



Non-Linear function of n random variables

It is time for some
board derivations

SOLUTION

We obtain... a terrific expression ©

1
B} = E{g(1)} ~ q(uy) + zz

Var(x} = Var{q(¥)} ~ Z( | )2 5 +ZZ
‘.uY ]
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Monte Carlo simulations
for uncertainty propagation
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Monte Carlo methods

Historical background

It originated in 1946 by Stanislaw Ulam, and later in collaboration
with John von Neumann to solve deterministic problems using a
probabilistic procedure.

Left to Right: John von Neumann, Richard
Feynman, and Stanislaw Ulam, at Bandelier
National Monument near Los Alamos, 1949.

THE BEGINNING of the
MONTE CARLO METHOD

by N. Metropolis

mathéwmaticsNs a delight 1o
& a challenge fo practise and

Ly by George Temple il |
TUDelft Pl b RN

Metropolis, N. (1987). The beginning




Simulating Mean & Variance of transformed variables

General principle

From the Expectation and Variance laws, we consider

N \ -
E(X) = Elg(n)} ~ Y q(¥) = fix @
l 1 v

Var{X} = Var{q(Y)} » -— Z[q(Yi) — x1lq(Y) — ax]" \‘/
l ~ \/

therefore, it represents a numerical approximation.

p QUESTION: why using N — 1 for the variance?
TUDelft



Simulating Mean & Variance of transformed variables

General principle

From the Expectation and Variance laws, we consider
N
1
B = B{q(N} =5 ) a(r) =
i

1

Var{X} = Var{q(Y)} ~ N — 1

N
D [a0) - Axlla(r) — "

therefore, it represents a numerical approximation.

QUESTION: why using N — 1 for the variance?
_ifu Delft Because we are making use of _sample mean fy,
and so Var{X} becomes an unbiased estimator.



Simulating Mean & Variance of transformed variables

General principle

From the Expectation and Variance laws, we consider
N
1
B = B{q(N} =5 ) a(r) = —— np.mean(x)
i

1

Var{X} = Var{q(Y)} ~ N — 1

N
> 1a(r) — axlla(¥) — )™ —> np.var(x, ddof=1)

therefore, it represents a numerical approximation.

QUESTION: why using N — 1 for the variance?
_if Delf Because we are making use of sample mean jiy,
UDelft and so Var{X} becomes an unbiased estimator.



Numerical exercise

Comparing Taylor and MC simulations

For the Taylor (15t order) expansion, we will proceed as discussed before.

For the Monte Carlo simulations, instead we will

1. Generate N samples from Y ~ N (uy, 2y), €.g. assumed to be normally distributed:;
2. Propagate each sample Y; using the non-linear transformation, i.e. X; = q(Y;);

3. Compute the (unbiased) sample mean and variance from X;, Vi =1 ... N.

.
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Barometric formula for an adiabatic atmosphere

Given an ideal gas with constant lapse rate, the Barometric law is

g

L K
= - = =~ 5256

which defines a non-linear dependence of atmospheric pressure on altitude.
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Barometric formula for an adiabatic atmosphere

Given an ideal gas with constant lapse rate, the Barometric law is

g

L K
= - =2~ 5256

which defines a non-linear dependence of atmospheric pressure on altitude.

Relevant quantities:
* po is the standard atmospheric pressure at sea level, e.g. 101,325 Pa;

L is the temperature lapse rate, e.g. 0.0065 KE

* his the height (in meters) above mean sea level,
« T, is the sea-level reference temperature (in Kelvin), e.g. 288.15 K°;

- g is the gravitational acceleration near Earth’s surface, e.g. 9.80665 m/s?;

%
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* R, is the specific gas constant for dry air, e.g. 287.05 ](kg/K°)_1;




Example with univariate distribution: h ~ N (uy, of)

Taylor (1t order) approximation

We have

where

dp(up) _ a-k ) a—i
dh 1—a-p, T,

Monte Carlo simulations

Generate samples up to N = 107, then compute Mean & Standard Deviation (i.e. vVar)

%
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Mean of P [Pa]

Comparison results for different number of samples

Convergence of Mean Convergence of Standard Deviation
654
—8— Monte Carlo —8— Monte Carlo
47220 A ---- Taylor (1st order) ---- Taylor (1st order)

652 A

650 A

648 A

646 -

644 A

Standard deviation of P [Pa]

642 A

640 '\

' ! L | ' ' LI | ! ! LI | ' ! L L L 638 ! ! LI | ' ! LI | ! T L L |
103 104 10° 106 107 103 104 10° 1060
Number of samples N Number of samples N

107



Example with univariate distribution: h ~ N (uy, o7)

Taylor (2"9 order) approximation

We have

Ur% dzp(yh)
2 dh?

d 2
E(p(h)) = p(up) + p(uh))

Var(p(h)) =~ of - ( o

where

d*p(up)  a®-k(k—1)

L
dhz - (1 — - Mh)z p(:uh)) a = T_O

Monte Carlo simulations

Generate samples up to N = 107, then compute Mean & Standard Deviation (i.e. vVar)

TUDelft



Mean of P [Pa]

Comparison results for different number of samples

Convergence of Mean Convergence of Standard Deviation
654
—8— Monte Carlo —8— Monte Carlo
47220 A ---- Taylor (2nd order) ---- Taylor (2nd order)

648 -

646

644

Standard deviation of P [Pa]

642

640 -\

' ' LENLELELELEL | ' ! LI | ! ' LENNLELEELELEL | ' ! L L 638 ! ! LI | ! ' LI | ' T L L |
103 104 10° 10° 107 103 104 10° 106
Number of samples N Number of samples N

107



Time for last few questions...

What happens if we
* Increase or decrease the expected value u,?
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Time for last few questions...

What happens if we

* Increase or decrease the expected value u,?

Then E(p(h)) surely
changes, but errors

In the approximation
are quite similar...

e.g. see derivatives.
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Pressure p(h) [Pa]

100000 |

80000

60000 f

40000

20000

Barometric pressure vs. height (0-15 km)

2 4 6 8
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- 1000
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Time for last few questions...

What happens if we
* Increase or decrease the standard deviation ¢, ?
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Time for last few questions...

What happens if we
* Increase or decrease the standard deviation ¢}, ?
* I larger, then g,y approximation gets poorer, but...

- if smaller, then o,y approximation is better! ©

Results for o, = 10 [m] < oL

+4.718e4 Conver gence o f Mean Convergence of Standard Deviation +4.718e4 Conver gence o f Mean Convergence of Standard Deviation
65.2 65.2
—&— Monte Carlo —8— Monte Carlo —8— Monte Carlo —&— Monte Carlo
4 ---- Taylor (1st order) ---- Taylor (1st order) E ---- Taylor (2nd order) ---- Taylor (2nd order)
65.0 65.0

©
o 64.8

of P [Pa]
@
>
=+
of P

Standard deviation
Standard deviation

103 104 10° 10° 107 10° 104 10° 10° 10 103 104 10° 106 107 10° 104 10° 10° 107
Number of samples N Number of samples N Number of samples N Number of samples N




Summary

%
TUDelft



Conclusions

Lessons (hopefully) learned

In this class, we have seen

- How a transformation of random variables affects their distribution;
« How first moments of the distribution can be propagated for linear transformations;
- How first moments of the distribution can be propagated for non-linear transformations;

- How Monte Carlo simulations can be adopted for propagating the uncertainty.

.
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Remember, if... ..Xis
Gaussian

Conclusions Linear function 7 is
Z =A-X Gaussian!
Non-linear function Z is not
Lessons (hopefully) learned 7 = AX) (o

In this class, we have seen

 How a transformation of random variables affects their distribution;

« How first moments of the distribution can be propagated for linear transformations;

...Xis not
Gaussian

Z is not
Gaussian

Z is not
Gaussian

- How first moments of the distribution can be propagated for non-linear transformations;

- How Monte Carlo simulations can be adopted for propagating the uncertainty.

Lastly, remember... only Gaussian distribution + Linear transformation = Gaussian again!
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What's next?

= Key information from today’s lecture can be found in the textbook, i.e.
https://mude.citg.tudelft.nl/book/2025/propagation _uncertainty/overview.html

* Wednesday’s workshop:

I.e. have fun with uncertainty propagation of Mean and Variance.

* Friday’s project:

I.e. group assignment (graded!), again on propagation & MC simulations.
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https://mude.citg.tudelft.nl/book/2025/propagation_uncertainty/overview.html

And enjoy the journey!
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