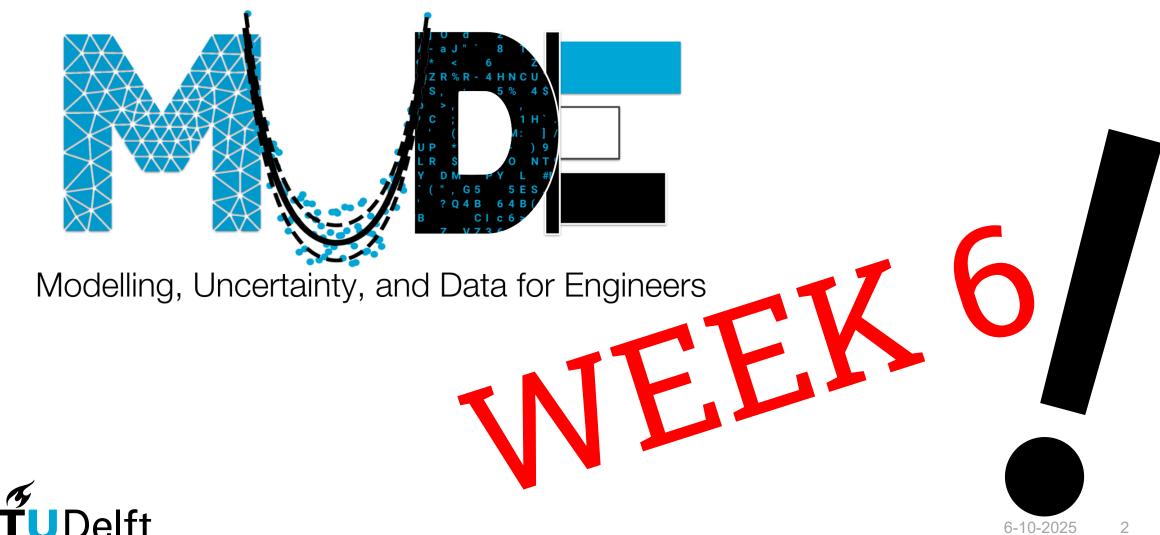
Modelling, Uncertainty and Data for Engineers (MUDE)

Week 1.6: Uncertainty Propagation

Lotfi Massarweh

Welcome to...



Background information

Learning Objectives

By the end of this week, you will be able

- To explain how uncertainty propagates through functions
- To apply (linear) propagation laws of mean and variances
- To adopt Monte Carlo simulations for propagating uncertainties

Motivation – Why shall we propagate the uncertainty?

Because for a given *stochastic* input of a certain transformation, also outputs will be *stochastic* but most likely with different characteristics, i.e. a different underlying distribution.

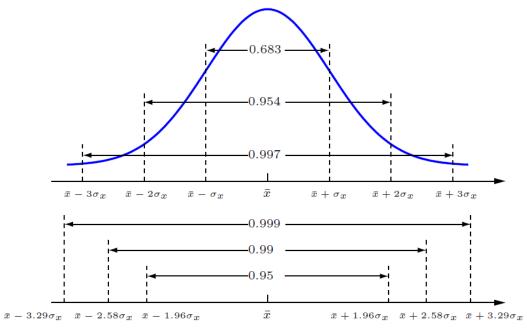
Content

- 1. Introduction
- 2. Transforming random variables
- 3. Mean and variance propagation laws
 - 1. ...considering linear functions
 - 2. ...considering **non-linear** functions
- 4. MC simulations for uncertainty propagation
- 5. Summary

Introduction

Small recap from Week 4 – Univariate distributions

A univariate continuous distribution function only takes a single variable as input, and so it assigns probability (densities) to this random variable.

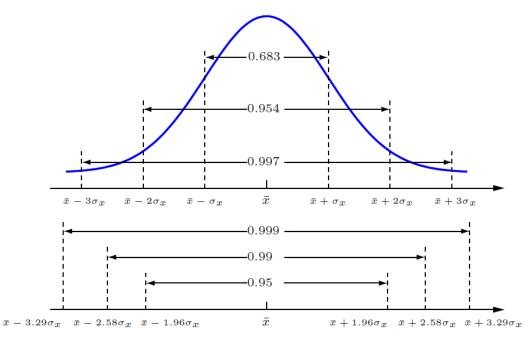


Example of Gaussian PDF - see details in ProbObs2009

PDF = Probability Density Function

Small recap from Week 4 – Univariate distributions

A univariate continuous distribution function only takes a single variable as input, and so it assigns probability (densities) to this random variable.



Example of Gaussian PDF – see details in **ProbObs2009**

Mean, variance and higher-order moments

If x is continuous with PDF being $f_x(x)$, then

Mean:
$$E\{x\} \stackrel{\text{def}}{=} \bar{x} = \int_{-\infty}^{\infty} x f_x(x) dx$$

Variance:
$$Var\{x\} \stackrel{\text{def}}{=} \sigma^2 = \int_{-\infty}^{+\infty} (x - \bar{x})^2 f_x(x) dx$$

$$\mu_{n} = \int_{-\infty}^{+\infty} (x - \bar{x})^{n} f_{x}(x) dx$$

$$\equiv E\{(x - \bar{x})^{2}\}$$

Small recap from Week 5 – Multivariate distributions

Joint probabilities

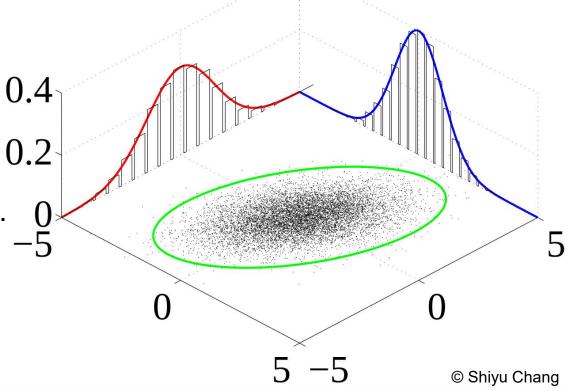
A probability distribution related to multiple random variables X, Y, ..., which can be independent or dependent. If variables are independent, then Pearson's correlation is zero!

Covariance Cov(X, Y):

Measure of joint variability of two variables.

Pearson's coefficient ρ :

- Measure of <u>linear correlation</u> between two variables.



Transforming random variables

Function inputs: deterministic vs stochastic

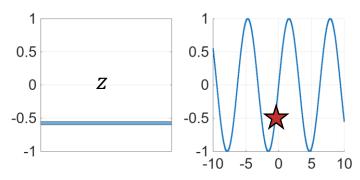
The function is

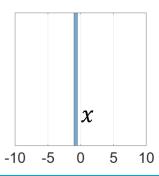
$$g(x) = \sin(x)$$

with
$$x \sim \mathcal{N}(0, \sigma^2)$$

Deterministic case

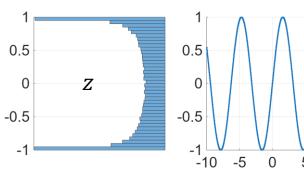
We take z = g(x), for x being deterministic.

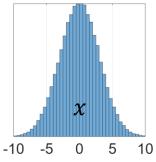




Stochastic case

We take z = g(x), for x being random variable.





Case
$$\sigma = 3$$

Function inputs: deterministic vs stochastic

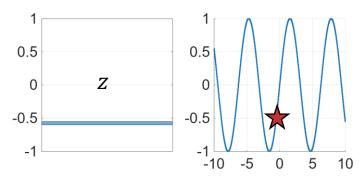
The function is

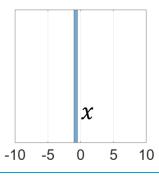
$$g(x) = \sin(x)$$

with $x \sim \mathcal{N}(0, \sigma^2)$

Deterministic case

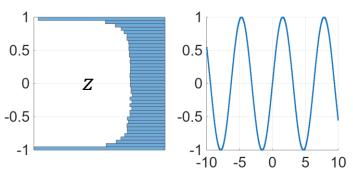
We take z = g(x), for x being deterministic.

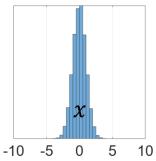




Stochastic case

We take z = g(x), for x being random variable.





Case
$$\sigma = 1$$

Function inputs: deterministic vs stochastic

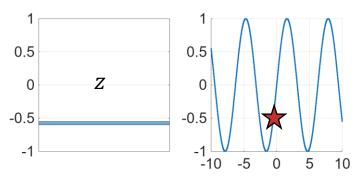
The function is

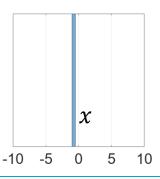
$$g(x) = \sin(x)$$

with
$$x \sim \mathcal{N}(0, \sigma^2)$$

Deterministic case

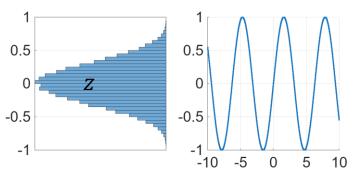
We take z = g(x), for x being deterministic.

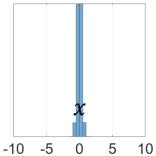




Stochastic case

We take z = g(x), for x being random variable.





Case
$$\sigma = 0.3$$

Some examples from physical problems

· Temperature conversion from Celsius to Fahrenheit

$$T_f = q(T_c) = \frac{9}{5}T_c + 32$$

• Compute the mean of m repeated measurements Y_i

$$\hat{X} = q(Y_1, \dots, Y_m) = \frac{1}{m} \sum_{i=1}^m Y_i$$
 Weeks 7 & 8!

- Subsurface temperature T_z as a function of depth Z and surface temperature T_0 , given a known factor a $T_z=q(T_0,Z)=T_0+a\cdot Z$
- Wind loading F on a building as function of area of building face A, wind pressure P, drag coefficient C $F=q(A,P,C)=A\cdot P\cdot C$
- ullet Evaporation Q using Bowen Ratio Energy Balance as function of the net radiation R, ground heat flux G, bowen ratio B

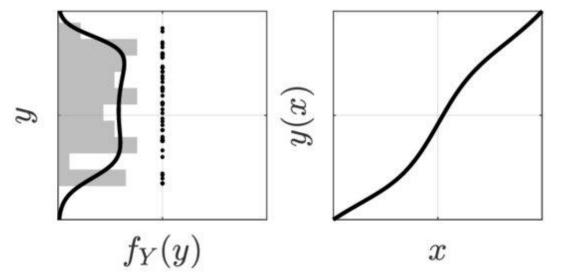
$$Q = q(R, G, B) = \frac{R-G}{1-B}$$

What comes in, then shall come out

Generic transformations

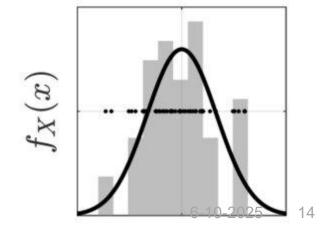
Distributions of output variables might be often changed due to a non-linear transformation.

➤ Therefore, their PDF & CDF will change!



What about simpler linear transformations?

Let's see an illustrative example...



2

Linear transformation

$$T_f \stackrel{\text{def}}{=} q(T_c) = \frac{9}{5}T_c + 32$$

Example: transformation of units

Temperature measurements are converted from degrees Celsius to Fahrenheit...

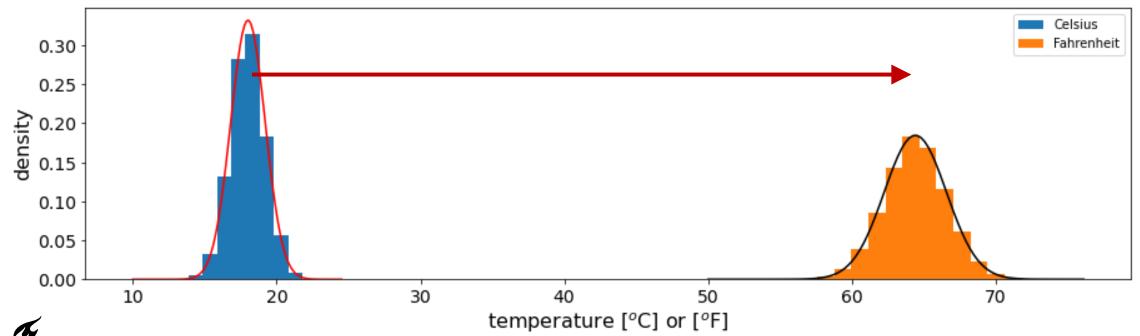
Linear transformation

$$T_f \stackrel{\text{def}}{=} q(T_c) = \frac{9}{5}T_c + 32$$

Example: transformation of units

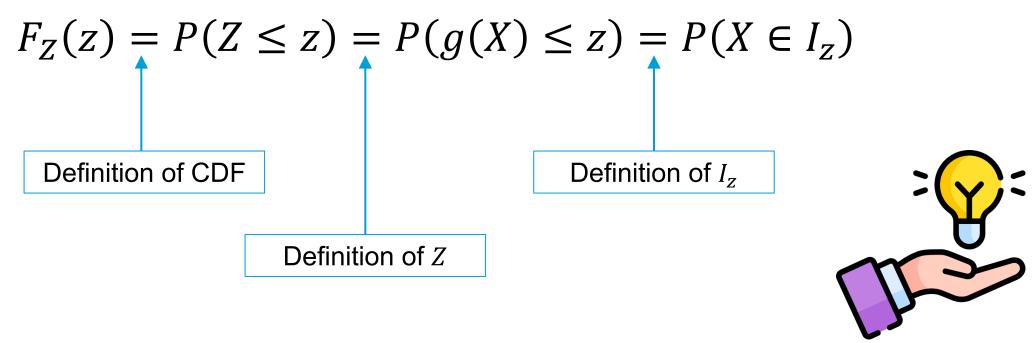
Temperature measurements are converted from degrees Celsius to Fahrenheit...

What do you notice? Why does the temperature in F° look less accurate?



Generic CDF transformation of univariate functions

Given Z = g(X), for a generic function g and random variable X, then its CDF is given by



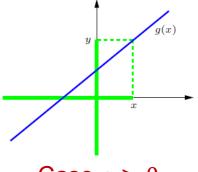
where $I_z = \{x \in \mathbb{R} \mid g(x) \le z\}$, i.e. all x values that satisfy $g(x) \le z$ for a given z.

Workout example

Linear transformation: z = g(x) = ax + b

Any volunteer on the board?

Workout solution



Linear transformation: z = g(x) = ax + b

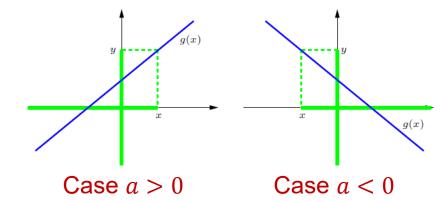
Case
$$a > 0$$

We consider three cases:

• Case a > 0:

$$F_Z(z) = P(Z \le z) = P(aX + b \le z) = P\left(X \le \frac{z - b}{a}\right) = F_X\left(\frac{z - b}{a}\right)$$

Workout solution



Linear transformation:
$$z = g(x) = ax + b$$

We consider three cases:

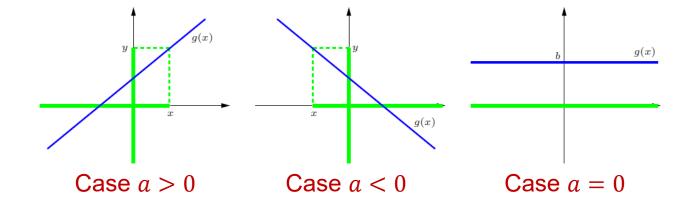
• Case a > 0:

$$F_Z(z) = P(Z \le z) = P(aX + b \le z) = P\left(X \le \frac{z - b}{a}\right) = F_X\left(\frac{z - b}{a}\right)$$

• Case *a* < 0:

$$F_Z(z) = P(Z \le z) = P(aX + b \le z) = P\left(X \ge \frac{z - b}{a}\right) = 1 - F_X\left(\frac{z - b}{a}\right)$$

Workout solution



Linear transformation:
$$z = g(x) = ax + b$$

We consider three cases:

• Case a > 0:

$$F_Z(z) = P(Z \le z) = P(aX + b \le z) = P\left(X \le \frac{z - b}{a}\right) = F_X\left(\frac{z - b}{a}\right)$$
 It looks familiar...

Case a < 0:

$$F_Z(z) = P(Z \le z) = P(aX + b \le z) = P\left(X \ge \frac{z - b}{a}\right) = 1 - F_X\left(\frac{z - b}{a}\right)$$

Case a=0:

$$F_Z(z) = P(Z \le z) = \begin{cases} 1, & z \ge b \\ 0, & z < b \end{cases}$$

Expectation & Variance propagation laws

In general, computing CDF (or PDF) for arbitrary distribution and/or functions is cumbersome, therefore we might restrict ourselves to first two moments, i.e. Mean & Variance.

Theorem (Expectation law)

For $\mathbf{X} \in \mathbb{R}^n$ being an n-dimensional random vector with continuous PDF $f_{\mathbf{X}}(\mathbf{x})$, we consider $\mathbf{Z} = \mathbf{g}(\mathbf{X})$, where $\mathbf{g} : \mathbb{R}^n \to \mathbb{R}^m$ has continuous first partial derivatives. Then the expectation of \mathbf{Z} is

$$\mathbb{E}(\mathbf{Z}) = \mathbb{E}(\mathbf{g}(\mathbf{X})) = \int_{\mathbb{R}^n} \mathbf{g}(x) f_{\mathbf{X}}(x) dx$$

Corollary (Variance law)

Under the same assumptions, the variance of ${f Z}$ is

$$ext{Var}(\mathbf{Z}) = ext{Var}(\mathbf{g}(\mathbf{X})) = \int_{\mathbb{R}^n} [\mathbf{g}(\mathbf{x}) - oldsymbol{\mu}_z] [\mathbf{g}(\mathbf{x}) - oldsymbol{\mu}_z]^T f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$

where $m{\mu}_z = \mathbb{E}(\mathbf{g}(\mathbf{X}))$, which is described in the previous Theorem.

IMPORTANT NOTE

Proof is rather complicated and **not** treated in this course; these expressions holds if

- I) Random vector with continuous PDF,
- II) Continuous first partial derivatives.

Expectation & Variance propagation laws

In general, computing CDF (or PDF) for arbitrary distribution and/or functions is cumbersome, therefore we might restrict ourselves to first two moments, i.e. Mean & Variance.

Theorem (Expectation law)

For $\mathbf{X} \in \mathbb{R}^n$ being an n-dimensional random vector with continuous PDF $f_{\mathbf{X}}(\mathbf{x})$, we consider $\mathbf{Z} = \mathbf{g}(\mathbf{X})$, where $\mathbf{g} : \mathbb{R}^n \to \mathbb{R}^m$ has continuous first partial derivatives. Then the expectation of \mathbf{Z} is

$$\mathbb{E}(\mathbf{Z}) = \mathbb{E}(\mathbf{g}(\mathbf{X})) = \int_{\mathbb{R}^n} \mathbf{g}(x) f_{\mathbf{X}}(x) dx$$

IMPORTANT NOTE

Proof is rather complicated and **not** treated in this course; these expressions holds if

- I) Random vector with continuous PDF,
- II) Continuous first partial derivatives.

Corollary (Variance law)

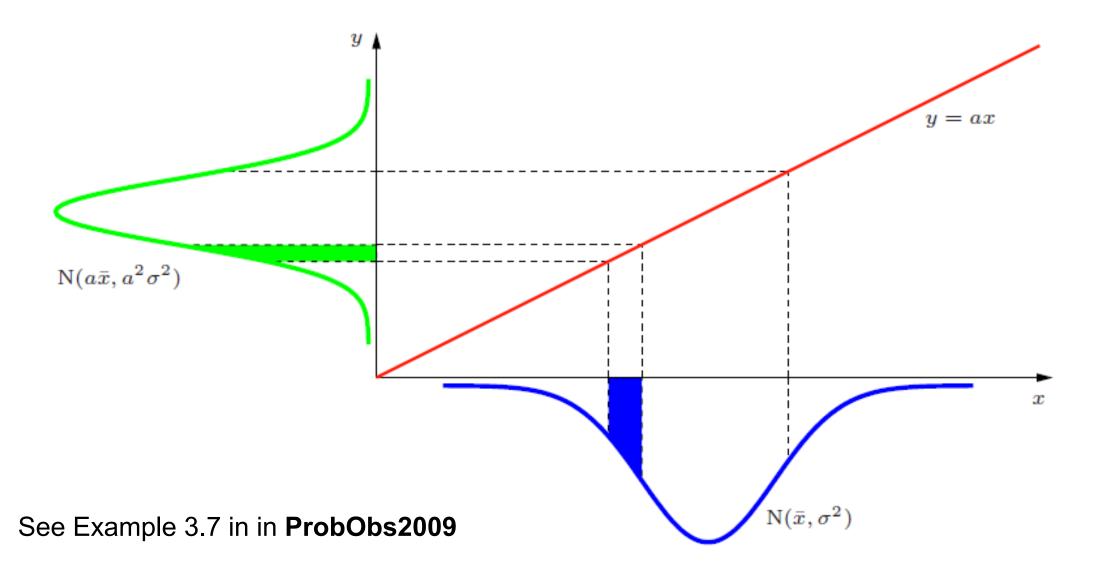
Under the same assumptions, the variance of ${f Z}$ is

$$ext{Var}(\mathbf{Z}) = ext{Var}(\mathbf{g}(\mathbf{X})) = \int_{\mathbb{R}^n} [\mathbf{g}(\mathbf{x}) - oldsymbol{\mu}_z] [\mathbf{g}(\mathbf{x}) - oldsymbol{\mu}_z]^T f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$

where $\mu_z = \mathbb{E}(\mathbf{g}(\mathbf{X}))$, which is described in the previous Theorem.

Remember, if	X is Gaussian	X is not Gaussian
Linear function $Z = A \cdot X$	Z is Gaussian!	Z is not Gaussian
Non-linear function $Z = A(X)$	<i>Z</i> is not Gaussian	Z is not Gaussian

Gaussian + Linear transformation = again Gaussian!



Mean and Variance propagation laws

Looking at propagating first two moments

What we already know?

Let's consider a function $q: \mathbb{R}^m \to \mathbb{R}$ given m random variables:

$$X = q(Y) = q(Y_1, Y_2, ..., Y_m)$$

with known mean and covariance matrix for Y given by

$$E\{Y\} = \mu_Y$$
, $Var\{Y\} = \Sigma_Y$

What we look for?

We would like to compute:

	Mean	Variance
1	$E\{X\} = \mu_X,$	$Var{X} = \Sigma_X$

Linear function of one random variable

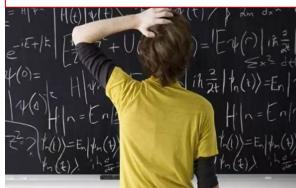
We consider $Y \in \mathbb{R}$ and $X \in \mathbb{R}$ given by

$$X = q(Y) = a \cdot Y + c$$

where

$$E{Y} = \mu_Y$$
, $Var{Y} = \sigma_Y^2$

It is time for some board derivations



SOLUTION

$$E\{X\} = a \cdot E\{Y\} + c = a \cdot \mu_Y + c$$

$$Var\{X\} = a^2 \cdot Var\{Y\} = a^2 \cdot \sigma_Y^2$$

Linear function of two random variables

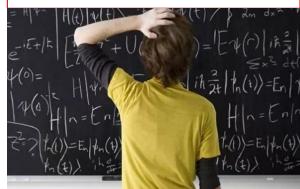
We consider $Y \in \mathbb{R}^2$ and $X \in \mathbb{R}$ given by

$$X = q(Y) = a_1 \cdot Y_1 + a_2 \cdot Y_2 + c$$

where

$$E\{Y\} = \mu_Y = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad Var\{Y\} = \Sigma_Y = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{bmatrix}$$

It is time for some board derivations



SOLUTION

$$E\{X\} = a_1 \cdot E\{Y_1\} + a_2 \cdot E\{Y_2\} + c = a_1 \cdot \mu_1 + a_2 \cdot \mu_2 + c$$

$$Var\{X\} = (a_1, a_2) \cdot Var\{Y\} \cdot {a_1 \choose a_2} = a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + 2a_1 a_2 \sigma_{12},$$

$$\sigma_{12} = \operatorname{Cov}(Y_1, Y_2)$$

Linear function of *n* random variables

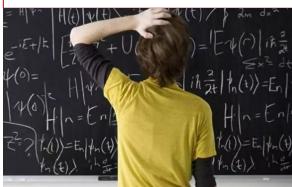
We consider $Y \in \mathbb{R}^n$ and $X \in \mathbb{R}^m$ given by

$$X = q(Y) = AY + c$$

where

$$E\{Y\} = \mu_Y \in \mathbb{R}^n$$
, $Var\{Y\} = \Sigma_Y \in \mathbb{R}^{n \times n}$

It is time for some board derivations



SOLUTION

$$E\{X\} = A E\{Y\} + c$$

$$Var{X} = A\Sigma_Y A^T$$

Non-Linear function of one random variable

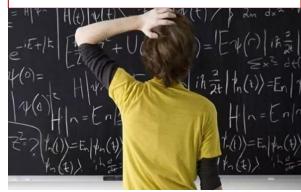
We consider $Y \in \mathbb{R}$ and $X \in \mathbb{R}$ given by

$$X = q(Y) \approx q(\mu_Y) + \frac{dq}{dY_{|\mu_Y}} (Y - \mu_Y) + \frac{1}{2!} \frac{d^2q}{dY^2_{|\mu_Y}} (Y - \mu_Y)^2$$

where

$$E{Y} = \mu_Y$$
, $Var{Y} = \sigma_Y^2$

It is time for some board derivations



SOLUTION

$$\mathrm{E}\{X\} = \mathrm{E}\{q(Y)\} \approx q(\mu_Y) + \frac{dq}{dY} (Y - \mu_Y) + \frac{1}{2} \frac{d^2q}{dY^2} |\mu_Y| \sigma_Y^2 \quad \text{Mean-bias term}$$

$$\operatorname{Var}\{X\} = \operatorname{Var}\{q(Y)\} \approx \left(\frac{dq}{dY_{|\mu_Y}}\right)^2 \sigma_Y^2 + h.o.t.$$

Non-Linear function of *n* random variables

SOLUTION

We obtain... a terrific expression ©

$$E\{X\} = E\{q(Y)\} \approx q(\mu_Y) + \frac{1}{2} \sum_{i}^{n} \frac{\partial^2 q}{\partial Y_i^2} \Big|_{\mu_Y} \sigma_i^2 + \frac{1}{2} \sum_{i=1}^{n} \sum_{\substack{j=1 \ j \neq 1}}^{n} \frac{\partial^2 q}{\partial Y_i \partial Y_j} \Big|_{\mu_Y} Cov(Y_i, Y_j)$$

$$\operatorname{Var}\{X\} = \operatorname{Var}\{q(Y)\} \approx \sum_{i}^{n} \left(\frac{\partial q}{\partial Y_{i}}_{|\mu_{Y}}\right)^{2} \sigma_{i}^{2} + \sum_{i=1}^{n} \sum_{\substack{j=1 \ j \neq 1}}^{n} \left(\frac{\partial q}{\partial Y_{i}}_{|\mu_{Y}}\right) \left(\frac{\partial q}{\partial Y_{j}}_{|\mu_{Y}}\right) \operatorname{Cov}(Y_{i}, Y_{j})$$

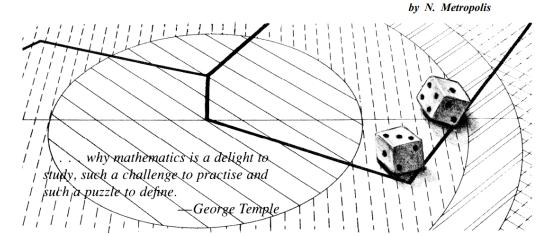
Monte Carlo simulations for uncertainty propagation

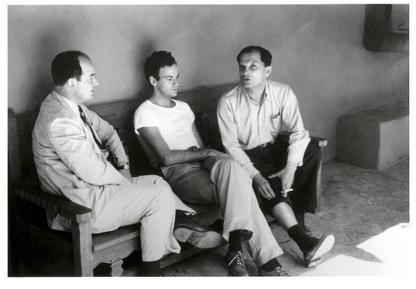
Monte Carlo methods

Historical background

It originated in <u>1946</u> by **Stanislaw Ulam**, and later in collaboration with **John von Neumann** to solve deterministic problems using a probabilistic procedure.

THE BEGINNING of the MONTE CARLO METHOD





Left to Right: John von Neumann, Richard Feynman, and Stanislaw Ulam, at Bandelier National Monument near Los Alamos, 1949.

6-10-2025

Simulating Mean & Variance of transformed variables

General principle

From the Expectation and Variance laws, we consider

$$E\{X\} = E\{q(Y)\} \approx \frac{1}{N} \sum_{i}^{N} q(Y_i) \equiv \hat{\mu}_X$$

$$Var{X} = Var{q(Y)} \approx \frac{1}{N-1} \sum_{i=1}^{N} [q(Y_i) - \hat{\mu}_X] [q(Y_i) - \hat{\mu}_X]^T$$

therefore, it represents a numerical approximation.

Simulating Mean & Variance of transformed variables

General principle

From the Expectation and Variance laws, we consider

$$E\{X\} = E\{q(Y)\} \approx \frac{1}{N} \sum_{i}^{N} q(Y_i) \equiv \hat{\mu}_X$$

$$Var{X} = Var{q(Y)} \approx \frac{1}{N-1} \sum_{i=1}^{N} [q(Y_i) - \hat{\mu}_X] [q(Y_i) - \hat{\mu}_X]^T$$

therefore, it represents a numerical approximation.

QUESTION: why using N-1 for the variance? Because we are making use of sample mean $\hat{\mu}_X$, and so $Var\{X\}$ becomes an *unbiased* estimator.

Simulating Mean & Variance of transformed variables

General principle

From the Expectation and Variance laws, we consider

$$\operatorname{Var}\{X\} = \operatorname{Var}\{q(Y)\} \approx \frac{1}{N-1} \sum_{i=1}^{N} [q(Y_i) - \hat{\mu}_X][q(Y_i) - \hat{\mu}_X]^T \longrightarrow \operatorname{np.var}(x, \operatorname{ddof}=1)$$

therefore, it represents a numerical approximation.

QUESTION: why using N-1 for the variance? Because we are making use of sample mean $\hat{\mu}_X$, and so $Var\{X\}$ becomes an *unbiased* estimator.

Numerical exercise

Comparing Taylor and MC simulations

For the **Taylor** (1st order) expansion, we will proceed as discussed before.

For the **Monte Carlo simulations**, instead we will

- 1. Generate *N* samples from $Y \sim \mathcal{N}(\mu_Y, \Sigma_Y)$, e.g. assumed to be normally distributed;
- 2. Propagate each sample Y_i using the non-linear transformation, i.e. $X_i = q(Y_i)$;
- 3. Compute the (unbiased) sample mean and variance from X_i , $\forall i = 1 ... N$.

Barometric formula for an adiabatic atmosphere

Given an ideal gas with constant lapse rate, the Barometric law is

$$p(h) = p_0 \left(1 - \frac{L}{T_0}h\right)^{\kappa}, \qquad \kappa = \frac{g}{R_d L} \approx 5.256$$

which defines a non-linear dependence of atmospheric pressure on altitude.

Barometric formula for an adiabatic atmosphere

Given an ideal gas with constant lapse rate, the Barometric law is

$$p(\mathbf{h}) = p_0 \left(1 - \frac{L}{T_0} \mathbf{h} \right)^{\kappa}, \qquad \kappa = \frac{g}{R_d L} \approx 5.256$$

which defines a non-linear dependence of atmospheric pressure on altitude.

Relevant quantities:

- p_0 is the standard atmospheric pressure at sea level, e.g. 101,325 Pa;
- L is the temperature lapse rate, e.g. $0.0065 \frac{K^{\circ}}{m}$;
- h is the height (in meters) above mean sea level;
- T_0 is the sea-level reference temperature (in Kelvin), e.g. 288.15 K°;
- g is the gravitational acceleration near Earth's surface, e.g. $9.80665 \, m/s^2$;
- R_d is the specific gas constant for dry air, e.g. 287.05 $J(kg/K^\circ)^{-1}$;

Example with univariate distribution: $h \sim \mathcal{N}(\mu_h, \sigma_h^2)$

Taylor (1st order) approximation

We have

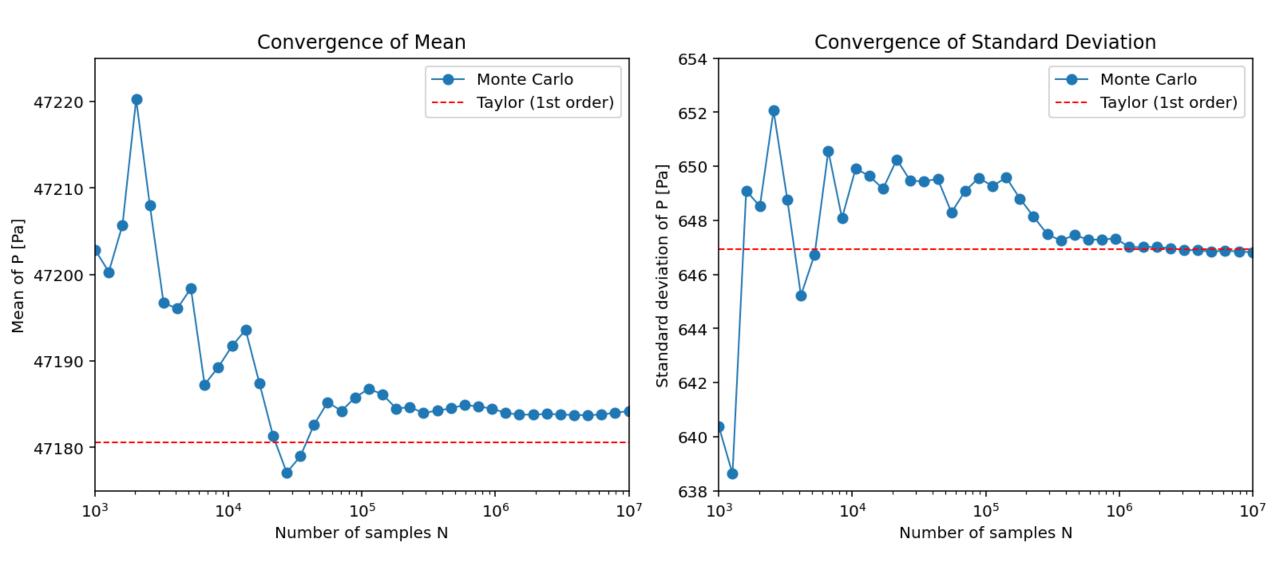
where

$$\frac{dp(\mu_h)}{dh} = -\frac{\alpha \cdot \kappa}{1 - \alpha \cdot \mu_h} p(\mu_h), \qquad \alpha = \frac{L}{T_0}$$

Monte Carlo simulations

Generate samples up to $N=10^7$, then compute Mean & Standard Deviation (i.e. \sqrt{Var})

Comparison results for different number of samples



Example with univariate distribution: $h \sim \mathcal{N}(\mu_h, \sigma_h^2)$

Taylor (2nd order) approximation

We have

$$E(p(h)) \approx p(\mu_h) + \frac{\sigma_h^2}{2} \frac{d^2 p(\mu_h)}{dh^2}, \quad Var(p(h)) \approx \sigma_h^2 \cdot \left(\frac{dp(\mu_h)}{dh}\right)^2$$

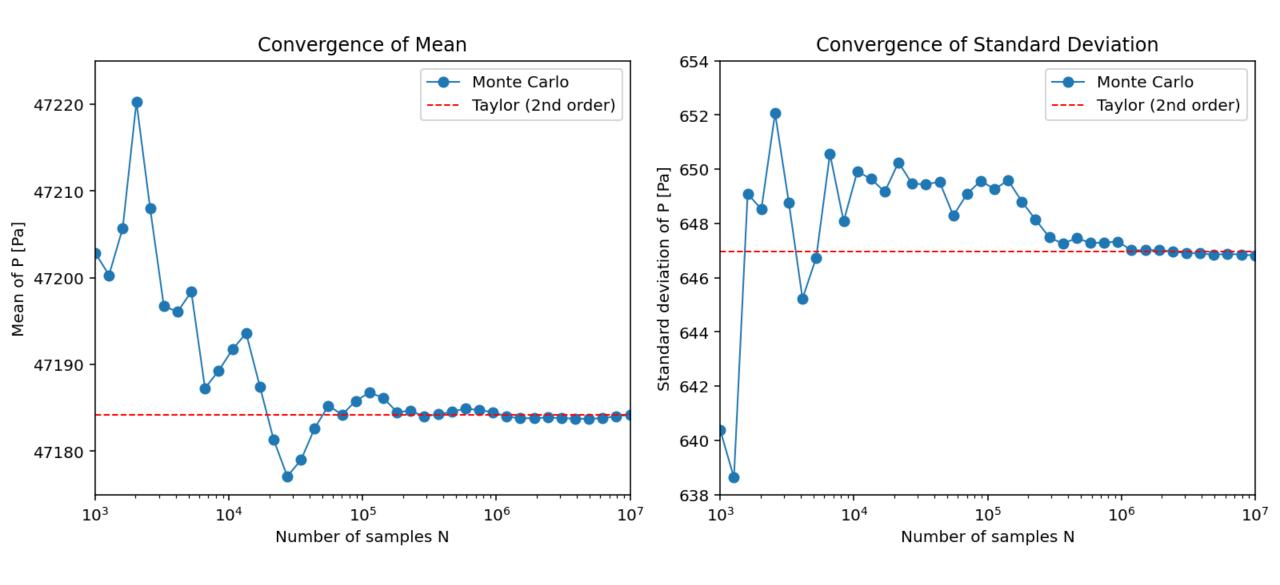
where

$$\frac{d^2p(\mu_h)}{dh^2} = -\frac{\alpha^2 \cdot \kappa(\kappa - 1)}{(1 - \alpha \cdot \mu_h)^2} p(\mu_h), \qquad \alpha = \frac{L}{T_0}$$

Monte Carlo simulations

Generate samples up to $N=10^7$, then compute Mean & Standard Deviation (i.e. \sqrt{Var})

Comparison results for different number of samples



What happens if we

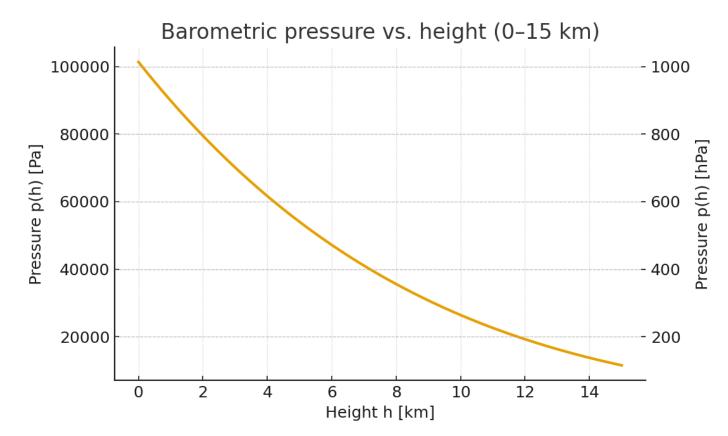
• Increase or decrease the **expected value** μ_h ?

What happens if we

• Increase or decrease the **expected value** μ_h ?

Then E(p(h)) surely changes, but errors in the approximation are quite similar...

e.g. see derivatives.



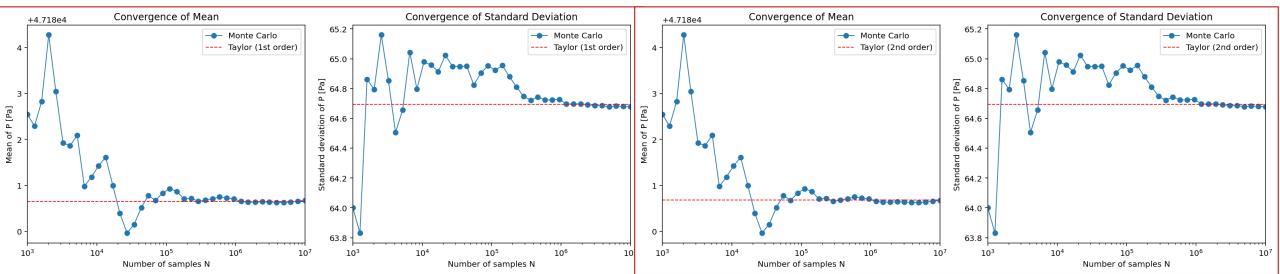
What happens if we

• Increase or decrease the **standard deviation** σ_h ?

What happens if we

- Increase or decrease the **standard deviation** σ_h ?
 - If larger, then $\sigma_{p(h)}$ approximation gets poorer, but...
 - if smaller, then $\sigma_{p(h)}$ approximation is better! \odot

Results for
$$\sigma_h = 10 [m] \ll \sigma_h^{\rm OLD}$$



Summary

Conclusions

Lessons (hopefully) learned

In this class, we have seen

- How a transformation of random variables affects their distribution;
- How first moments of the distribution can be propagated for linear transformations;
- How first moments of the distribution can be propagated for non-linear transformations;
- How Monte Carlo simulations can be adopted for propagating the uncertainty.

Conclusions

Lessons (hopefully) learned

(Hoperany)	Icarrica

Remember, if	X is Gaussian	X is not Gaussian
Linear function $Z = A \cdot X$	Z is Gaussian!	Z is not Gaussian
Non-linear function $Z = A(X)$	Z is not Gaussian	Z is not Gaussian

In this class, we have seen

- How a transformation of random variables affects their distribution;
- How first moments of the distribution can be propagated for linear transformations;
- How first moments of the distribution can be propagated for non-linear transformations;
- How Monte Carlo simulations can be adopted for propagating the uncertainty.

Lastly, remember... only Gaussian distribution + Linear transformation = Gaussian again!

What's next?

Key information from today's lecture can be found in the textbook, i.e.
 https://mude.citg.tudelft.nl/book/2025/propagation_uncertainty/overview.html

Wednesday's workshop:

i.e. have fun with uncertainty propagation of Mean and Variance.

Friday's project:

i.e. group assignment (graded!), again on propagation & MC simulations.

And enjoy the journey!

NOTICE: your "journey" is often a non-linear function! ©