Week 1.5 : Multivariate distributions
Patricia Mares Nasarre
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Contents — Multivariate distributions

Bivariate Normal pdf (p=0.77)
1. Recap & motivation
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Recap Week 1

Deterministic vs Stochastic

Deterministic models are those which for some given inputs, always provide the same output. For instance, a
equation which gives the average concentration of CO, in a city as function of the traffic. For a certain value
of traffic, the model will always provide the same concentration of CO,. Therefore, these models that there
is no uncertainty. On the contrary, stochastic models are those which embrace the uncertainty. This is

Deterministic — If input is ‘a’, output will

stochastic models will produce different outputs for a given input. In fact, the inputs and outputs of always be ’ b,

stochastic models are probabilistic distributions (you will learn more about this later!), which relate the values S

of the variable with the probability of observing it. Stochastic N |f in put iS ‘a, what iS the
H

And how do | choose between a deterministic and stochastic model? pro babil |ty of ‘b’

All systems, in reality, are stochastic to our eyes, since we never truly know the actual properties and inputs.
However, under certain circumstances, this stochasticity can be neglected. Let us take a look to some M .

o ) odel uncertaint
examples of deterministic and stochastic systems: y

]
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Recap Week 4

= The distribution of the random variable X has a

PDF fy(x) and a CDF Fyx(x). The CDF is then
defined as

P(X < %) = Fy(x) = j fe(x)dx

The expression above can be applied also over an
interval, Q, by changing the limits of the integral.
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Recap Week 4
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Model the uncertainty
What about Week 5? of more than one

random variable

Multivariate:
= Multi:
= Variate:

Distributions

= We are going to keep having fun with uncertainty modelling!
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0.30

Why 1s that different to Week 4? =
We are studying the uncertainty in the ) ]
relationship between the height and shoe &5
size of people. 010
But what are we missing? 0.00
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= Gaussian distribution, y=39, 0=1.5
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Why is that different to Week 4?

We are studying the uncertainty in the
relationship between the height and shoe

size of people.

But what are we missing?

distribution of shoe size.

distribution of height.

3. Pair the two sets of samples.

1. Generate 100 random samples from the

2. Generate 100 random samples from the
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Why is that different to Week 4?

We are studying the uncertainty in the %
relationship between the height and shoe
size of people. e .
® e
42 o o0 * o
But what are we missing? § . o <8, ,‘:g o0 :.' o
2 e0d e
Typically, higher people use larger shoe sizes. ’ o'.- 'f:&‘-. g_.’:"“g' °
387 ® o, 8 o o °
Just by characterizing independently the e® %90 o o
distribution of the two random variables is not 36 - ®e °
enough to account for the relationship °
between them. 34 L — : : ; :
150 160 170 180 190 200

Height (cm)
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Why is that different to Week 4?

We are studying the uncertainty in the
relationship between the height and shoe
size of people.

But what are we missing?

Typically, higher people use larger shoe sizes.

Just by characterizing independently the
distribution of the two random variables is not
enough to account for the relationship
between them.
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Gust speed G [m/s]

17.5 1

15.0 1

12.5

10.0

7.5
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0.0 1

Why is that different to Week 4?

Simulations

Observations

0 2 4 6 8
wind speed v [m/s]
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Why is that different to Week 4?

Variables of interest are often ‘tied’ to each other in engineering and
geosciences problems, as they are generated by the same drivers.

Some examples:

= Wave height and wave period,;

= Temperature, soil moisture and precipitation;

= Wind velocity and wind direction;

= Vehicle velocity and CO, emissions;

= Concentrations of nitrogen and phosphorus in water;
= Concrete compressive strength and tensile strength;
= And many more!
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Contents — Multivariate distributions

Bivariate Normal pdf (p=0.77)

1.

2. Set theory and basic operations

3. Continuous variables

9(Q1,03)

a. Extension to multivariate & empirical

computations

b. Measures of dependence

Multivariate Gaussian distribution
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Set theory and basic operations
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Basic definitions

= Sample space (S): collection of all possible outcomes arising from an experiment that involves
chance.

{{Heads, Heads},
{Heads, Tails},
{Tails, Heads},

{Tails, Tails}}

2 X

= Event: specific outcome or set of outcomes from the experiment
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Basic definitions

= Probability of an event:

Sample space? P(1)?

1x Q) 1,23,456  PA)=1/6~017

= Probability of the complement:  P(1)?

P(1)=1-P1) =~ 0.83
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Discrete events

32/138 = 0.23

Event A

11/138 = 0.18

EventB

TUDelft

Probability of the sample space:

P(S) =1

We can better know MUDE
students thanks to Max!

A: The favorite ice cream flavor
of a MUDE student is pistachio

B: A MUDE student believes that
could win a fight against a
Goose (very angry)



Discrete events

11/138 = 0.18

TUDelft

Is it possible that A and B occur
at the same time?

AND or intersection, P(A N B)

Any idea on how to calculate?



Independence

* Independence:

A and B are considered independent if and only if the AND probability, P(A N B), can be
factorized into the product of their probabilities.

P(ANB) = P(A)P(B)
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Discrete events

S Is it possible that A and B occur
at the same time?

11/138 = 0.18 AND or intersection, P(A N B)

Assuming independence:

P(ANB) = 0.23 x 0.18 ~ 0.04

According to MUDE student
responses:

P(ANB) = 3/138 ~ 0.02

) There may be some
4 degree of dependence?
TUDelft




Discrete events

32/138 = 0.23

Event A

11/138 = 0.18

EventB

TUDelft

Is it possible that none of them
occur?

Area outside both circles is not
Zzero.



Discrete events
P(ANB) =3/138 ~ 0.02

S

32/138 = 0.23 11/138 = 0.18

Event A Event B
Is it possible that either of them
occurs?

OR or union, P(A U B)

P(AUB) = P(A) + P(B) — P(AN B)

P(AUB) =0.234+0.18—-0.02 = 0.39
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Independence & conditional probability

* Independence:

A and B are considered independent if and only if the AND probability, P(A N B), can be
factorized into the product of their probabilities.

P(ANB) = P(A)P(B)

= Conditional probability:

Probability of an event given that another event is known to have occurred.

P(A) P Today we will see how to
P(A|B) = P(AN B) = ( )M = P(A) compute P(A n B) when random
P(B) P variables are not independent

If independent
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Discrete events — conditional probability P(4|B) =
P(ANB) = 3/138 ~ 0.02

32/138 = 0.23

Event A

11/138 = 0.18

EventB

S

TUDelft

_ P(ANB)

P(B)

What is the probability of a
MUDE student that can win a

fight with a very angry goose
given that their favorite ice

cream flavor is pistachio?
P(BJA) = 0.02/0.23 =0.09

MUDE students who like pistachio
ice cream do not feel especially
strong against a very angry goose

<
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Let's move to continuous variables

Extension to multivariate & empirical
computations
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Continuous vs discrete

Random variables

= What is a discrete variable? > Finite number of
possible values

"Coin Toss (3635981474)" by ICMA Photos.

= What is a continuous [ > Infinite number of
variable? possible values

%
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From events to intervals

= Continuous variables
Take an infinite number of values so we evaluate them in an interval, ().
OQ=x€eRia <x<b
Examples: exceedance probability P(X > x)

= From discrete events to continuous random variables: A — Q
Instead of P(A) — P(x € Q)

%
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Refresher: one random variable

0.5

= The distribution of the random variable X has a
PDF fy(x) and a CDF Fyx(x). The CDF is then
defined as

P(X < %) = Fy(x) = j fe(x)dx

The expression above can be applied also over an
interval, Q, by changing the limits of the integral.
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Extending to a higher number of random variables

= Extending to two random variables, the bivariate distribution of the random variables X and
Y has a PDF fyy(x,y) and a CDF Fyy(x,y). The CDF is then defined as

Yy rx
P(X < er Sy) = FXY(xJ’) = f f fXY(x;Y)dxdy

AND!
Joint probability/joint non-exceedance probability

The expression above can be extended to a higher number of variables defining multivariate
distributions. They can also be called joint distributions. It can also be applied on an interval, (.

We call marginal distribution to the univariate distribution associated with a single random
variable that is part of a multivariate distribution. E.g.: in the previous slide P(Q; > 100 m3/s)
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Empirical computations — one variable

Example case: discharge of
two rivers located close by
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200

175 B

0 50 100 150 200
Q1(m3/s)

P(Q, > 100m3/s) =

N = 34 observations

29-09-2025
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Empirical computations — one variable

200 200
Example case: discharge of 175 - 175 .,
two rivers located close by
150 150
G 125 . . g 125 K .
"E 100 o ® " 100 oo
“~ LX) ~ (]
S 75 ? *l o 75 v ¢
RN YO .« vdwd o
50 ] 50 e
[ ] [ ]
25 25
0 0
0 50 100 150 200 0 50 100 150 200
Q1(m3/s) Q1(m3/s)

P(Qy > 100 m3/s) = 11/34 = 0.32

N = 34 observations

]
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Empirical computations — two variables, joint prob

Example case: discharge of
two rivers located close by

Qq
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P(Q: <100m?3/s,Q, <75m3/s) =

N = 34 observations



Empirical computations — two variables, joint prob

Example case: discharge of
two rivers located close by

Qq
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Q,(m3/s)

0o1 < 100m3/s

NnQ, <75m3/s
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P(Q, <100m3/s,Q, < 75m3/s) =21/34 = 0.62

N = 34 observations



N =34
Empirical computations — two variables, OR prob observations

Oo1 <100m3/snQ, <75m?3/s

20
!
[
150 - :
— | o
n | o
o Y
£ 100 .: . e
e a
S hemmagootlloe
) sq o
50 - o, © :
* @ |
|
|
0 |

1) P(Q, < 100 m3/s OR Q, < 75m3/s) =
2) P(Q; < 100m3/s OR Q, < 75m3/s) =

]
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N =34
Empirical computations — two variables, OR prob observations

28%) Q. <100m3/su Q,<75m?3/s

l
e
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1) P(Q; < 100 m3/s OR Q, < 75m3/s) = 24/34 = 0.62
2) P(Q; < 100m3/s OR Q, < 75m3/s) =
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N =34

Empirical computations — two variables, OR prob observations
(a) Q1 <100m3/s

1) P(Q, < 100m3/s OR Q, < 75m?3/s) = 24/34 = 0.62
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(b) Q; <75m3/s

(0) Q1 < 100m3/s u Q, < 75m3/s

|
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P(AuB)=P(A)+ P(B) - P(ANnB)

2) P(Q; < 100m3/s OR Q, < 75m3/s) = P(Q; < 100m3/s) + P(Q, < 75m3/s)
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Q>(m?3/s)

Empirical computations — two variables, joint exceed

Q,>100m3/sn Qy, > 75m?3/s

200 |
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P(Q: > 100m3/s,Q, > 75m3/s) =
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Empirical computations — two variables, joint exceed

(a) Q1 <100m?3/s (b) Q; <75m3/s SC) Q1 >100m3/sn Q5> 75m3/s
200 ; 200 200 ]
I I
: ®e ®e : ®e
150 - : 150 - 150 - :
—_ ! o —_ o —_ ! °
0 | Y 0 Y 0 | PY
o I e o o o |l o
£ 100 - .: e £ 100 - ® e & 100 A o! . e
- L X ] = o0 = [ ]
O’ e r g O' T ™ ——_‘1____-__:— 0' R — - ———?———————_2—
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50 - & o ! 50 - o 50 - oo
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I I
I I
0 ' ! T 0 T T T 0 T ! T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Q1(m3/s) Q1(m?3/s) Q1(m3/s)

P(Q; >100m3/s,Q, >75m3/s)=1-P(Q; <100m3/s OR Q, < 75m3/s) =

=1 —[P(Q; <100 m3/s) + P(Q, < 75m3/s) — P(Q; < 100m3/s,Q, < 75m3/s)] =

=1 —P(Q; <100m3/s) — P(Q, <75m3/s) + P(Q; < 100 m3/s,Q, < 75m3/s) =
= 1-23/34 — 22/34 + 21/34=10/34
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Empirical computations — two variables, conditional

a >130m3/s b > 150m3/s|Q; > 130m3/s
200 : 500 (a) O, ; / 260) Q> / IQi1 /
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P(ANB
P(Q, > 150 m3/s|Q, > 130m3/s)=2/6 P(A|B) = ( )

P(B)

29-09-2025 39
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Contents — Multivariate distributions

1 . % ( e Simulations
17.5 ) x  Observations
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T 12.5 R
=
3. 2 10.0 » .
9 g 754 | .,» .
. 8 | X t\l e ©
5.0 L ":‘l =
' [P oo .
251 i
b. Measures of dependence 00 ’

0 2 4 6 8 10 12
wind speed v [m/s]

Multivariate Gaussian distribution

TUDelft



Measures of dependence
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Measures Of dependence Are two variables related? How much?

Covariance: measure of the joint variability of two variables

Cov(X1,X3) = E[(X1; — E(X1))(X2; — E(X2))] = E(X1X3) — E(X1)E(X3)

= Can take both positive and negative values
= Units equal to the product of the units of the analyzed variables

= High absolute values of covariance imply a strong relationship between
variables.

= |f Cov(X4,X5)>0, high values of X, typically occur together with high values of X,
= |f Cov(X4,X,)<O0, high values of X, typically occur together with low values of X,
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Measures of dependence

Covariance. Geometric interpretation

36 -

34 1

32 -

30 -

26 -

24

22 A

20 ~
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Cov(Xq,Xp) = E[(X1,; — E(X1))(Xz; — E(X3))]
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(b) Geometric interpretation
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Measures of dependence

Covariance. Geometric interpretation Cov(Xy,X;) = E[(X1; — E(X1))(X2; — E(X2))]

(a) Some rectagular areas (b) Average area
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34 - \ \\ o
3 \\ 0.4
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Measures of dependence

Covariance: measure of the joint variability of two variables

Cov(X1, X2) = El(X:,; ~[E(X (X, )

Let's do an example!

X;: Wind speed (m/s) X,: Wave height (m)
12 2.5
0 0.4
36 1.7
3 0.2
14 2.6
25 3.1
,‘E(X1)=15 m/s E(X)=1.75m

TUDelft



Measures of dependence

Covariance: measure of the joint variability of two variables

Cov(X1, X,) = ]E|(X1,,- — ]E(Xli)(Xz,i — E(X3))]

Let's do an example!

X4: Wind speed (m/s) X,: Wave height (m) | T1: X4;-E(X4) (m/s) ‘ T2: Xy-E(X5) (M) ‘
12 2.5 | |
0 0.4
36 1.7
3 0.2
14 2.6
25 3.1

,‘E(X1)=15 m/s E(X)=1.75m

E(T1XT2)=8.03
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Measures of dependence

Covariance: measure of the joint variability of two variables

Cov(X1,X5) = E|(X1,,- = E(Xl*)(Xz,i — E(X3))]

Let's do an example!

X;: Wind speed (m/s) X,: Wave height (m) | T1: X4;-E(X4) (m/s) T2: X5-E(X3) (m) T1 x T2 (m/sxm)
12 2.5 -3 0.75 -2.25
0 0.4 -15 -1.35 20.25
36 1.7 21 -0.05 -1.05
3 0.2 -12 -1.55 18.6
14 2.6 -1 0.85 -0.85
25 3.1 10 1.35 13.5
,‘E(X1)=15 m/s E(X)=1.75m

TUDelft
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Measures of dependence Cov(H,, W,)=8.03m2/s

Covariance: measure of the joint variability of two variables

Cov(X1,X3) = E[(X1; — E(X1))(X2; — E(X2))] = E(X1X3) — E(X1)E(X3)

= Units equal to the product of the units of the analyzed variables

= High absolute values of covariance imply a strong relationship between
variables.

If Cov(X4,X5)>0, high values of X, typically occur together with high values of X,
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Measures of dependence Cov(H,, W,)=8.03m2/s

Covariance: measure of the joint variability of two variables

Cov(X1,X3) = E[(X1; — E(X1))(Xs; — E(X2))] = E(X1X3) — E(X1)E(X?)

= Units equal to the product of the units of the analyzed variables

= High absolute values of covariance imply a strong relationship between
variables.

Drawback: not standardized
measure; difficult to compare
different pairs of random
variables with different units

%
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Measures Of dependence There are other correlation coefficients!

Pearson’s correlation coefficient: assesses the linear correlation between
two random variables.

= CO’U(Xl,Xz) o ?zl(Xli o Xl)(X2Z o X2)

ox,0 n s g '
S \/Zizl(xli = X1)? 201 (X2 — X5)?

p

Values between -1 and 1, regardless the units of the random variables.
p = 0: random variables are uncorrelated or independent.
p > 0:if one variable increases, the other one tends to increase.

p = 1 or -1: knowing one variable implies | know the other variable through a linear
;Elationship.
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Measures Of dependence There are other correlation coefficients!

Pearson’s correlation coefficient: assesses the linear correlation between
two random variables.

3




Contents — Multivariate distributions

Bivariate Normal pdf (p=0.77)
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Modelling the joint distribution

Why did we use parametric distributions in week 4?

[ Observations

0,040 1 e | == Norma = [nfer probabilities we have not observed

0.035 A / \

0030 - J \ = Make easier/faster computations

0.025 / \
g ! \

0.020 1 ] v Same holds for multivariate distributions!

0.015 / \

0.010 A { \

{1 14 \
0.005 / N
V4 S
v ~

0.000 T T T T
150 160 170 180 190 200

Height (cm)

{
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Which distributions?

Do you want to know more?
Here, only the multivariate Gaussian distribution. Go to MORE!

Cross Over on Probabilistic
Why? modelling

= [t can be manipulated analytically — wide range of applications
= Reliability
= Propagation of uncertainty (week 6)
= Observation theory (weeks 7 and 8)
= Between others
= First approach to model dependence

]
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The model: multivariate Gaussian distribution

Bivariate Gaussian distribution PDF:

b, (1, 22) = 1 (o) - (2eloopler) ) o (2 )

exp | —

270 1094/1 — p? 2(1 — p?)

where
= ¢,(x1,x,) denotes the PDF of the bivariate Gaussian distribution of Xy and X,

" U4, U, are the means of X, and X,
= 04,0, are the standard deviations of X; and X,
= pis the Pearson’s correlation coefficient of X, and X,

%
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The model: multivariate Gaussian distribution

Bivariate Gaussian distribution PDF:

b,(x1,22) = 1 exp ( (‘”10_1“1) _ (zp(xl_gllf)fimz_uz)) + (ma;fz) )

27’(‘0’10’2\/1—[)2 2(1_[)2)

| can be rewritten in matricial form as

1 o2 Cov(X1,X2)\ ' (21— m
¢p(w1,w2) = \/( exp <—2(5L'1 — p1 Ty — po) (CO’U(Xl,Xz) 0-% To — o
27)2

%
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The model: multivariate Gaussian distribution

Bivariate Gaussian distribution PDF:

1 o2 Cov(X1, Xo)\['|/z1 — 1
\/( 1 r‘p (_zl"’l — .22 — o) [Olov(Xl,le) 35) (w; —u;j)
2)

Mean vector Covariance matrix
Compressed fashion

= L ex —l x—p)!'E (e —
¢p(w1,w2)_\/(2ﬂ_)2|2| p( 2( p)” 3B u))

¢P(m1’ :122) -

o? C’ov(Xl,Xz)
CO’U Xl,Xz) 0'2

Mean vector

Covariance matrix

%
TUDelft



The model: multivariate Gaussian distribution

Bivariate Gaussian distribution CDF:

T1 LT
(I)X1,X2(w17332) — P(Xl < mlaX2 = 5132) — / / ¢p(31732)d31d32

where
= &y x,(x1,x,) denotes the CDF of the bivariate Gaussian distribution of X; and X,

No closed form of the integral!

%
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The model: multivariate Gaussian distribution

Bivariate Normal pdf (p=0.77) Bivariate Normal c.d.f (p=0.77)

_ i
_ a' o ‘ ‘
g 6"4_ os0 T ‘ }
S v |

Q.




Multivariate Gaussian distribution: marginals

Bivariate Gaussian distribution PDF:

1 1 0’2 CO’U(Xl X2) ! 1 — M1
Gp(1,%2) = €xXp (—(371 — p1 Ty — po) ( , )
P 2 a% Cov(Xy, X5) 2 Cov(X1,X3) o3 Ty — M2
m CO’U(Xl,Xz) O'%

If | model the distribution of X; and X, using a bivariate Gaussian
distribution, how is the univariate distribution of X,?

Gaussian!

%
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Multivariate Gaussian distribution: marginals

—

Courtesy of M. Ramgraber
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Multivariate Gaussian distribution: fitting

Bivariate Gaussian distribution PDF:

1 1 0’2 CO’U(Xl X2) ! 1 — M1
Gp(1,%2) = €xXp (—(371 — p1 Ty — po) ( , )

P 2 a% Cov(Xy, X5) 2 Cov(X1,X3) o3 Ty — M2
m CO’U(Xl,Xz) O'%

Given data of X, and X,, how can | fit the above distribution?

By moments!

| can compute u4, u,, 041,05, Cov(X4, X5) to define the covariance matrix and the
vector of means.

%
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Multivariate Gaussian distribution: conditionalizing

What happens to the distribution of X, given that | know the value of X,?

This is, the conditional distribution of X, given X,

Property of Gaussian distribution:

If two sets of random variables are jointly Gaussian, then the conditional distribution
of one set conditioned to other is again Gaussian

» Gaussian distribution is “friendly”: we have analytical expressions

%
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Multivariate Gaussian distribution: conditionalizing
(x1]x; = a)~N(4, 2)

Using the definition of conditional density, replacing x, by a and doing the (unpleasant)
algebra, we obtain

p=p +EpE5 e — ps)
=%, - E1222_21221

X X
where g is the known value of X, (here, Q,) and X = ( - 12)
IPNY

%
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Conditional bivariate Gaussian distribution - example

u— (%) m_ (4171000Y  Given Q,=100més, what s the
78 1000 352)  distribution of Q;?

= p + 225 (a— pe)

3= Xy - 231225«,,}221

%
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Conditional bivariate Gaussian distribution - example

u— (%) m_ (4171000Y  Given Q,=100més, what s the
78 1000 352 distribution of Q4?

£ =94+ 1000 x (352)~! x (100 — 78) ~ 112.0

35 =412 — 1000 X (352)7 x 1000 = 864.7 — 04, [z,—q = 29.4

= p+Ep30 a— po)

%=3%y- Z19E5) By
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Conditional bivariate Gaussian distribution - example

A (94) 5 (412 1000) Given Q,=100mé/s, what is the

78 1000 352 distribution of Q4?
1.0 T T T
—— Q1 ~N(94, 41) A
--- Conditional Q,~N(112,29.4)
0.8 It
/
/
7
/
0.6 /
CNa 4 !
Vi /
6 / I'
T 0.4 !
/ |
/
/
‘I
0.2 7
/
4
/ Py
0.0 Fmmmmmz=]

"0 50 100 150 200

5
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Conditional multivariate Gaussian distribution - example

*P We can extend the covariance matrix on a higher
number of dimensions.
Qq
94 412 1000 475
B = (78) > = (1000 352 520)
Q 12 475 520 272

Given p=22mm/h, what is the distribution of Q; and Q,?

Note: it is a bivariate margin!!

%
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Conditional multivariate Gaussian distribution - example

dar We can extend the covariance matrix on a higher
‘ot number of dimensions.
Q 94 412 1000 475
p=178 > = | 1000 352 520
Q, 12 475 520 272

We can extend the analytical equation to conditionalize the bivariate Gaussian distribution to the 3D
multivariate Gaussian distribution to compute (z1, Z5|z3 = a) ~ N(j, 2) as

N K1 213) 1
= + Y3 (@ —ps3)
K (#2) (223 53

fUDelft 2= (smm) ~ (5)7e o



More than two variables?

dr " (94) (412 1000 475) Given p=22mm/h, what is the
p— 2 —

oYy 78 1000 352 520 |  distribution of Q, and Q,?
12 475 520 272

How do you expect the
univariate distributions to be?

N K1 213> ~1
= + Ygs (@ — p3)
H (#2) <223 5
A Y12 P
S= (212 - (28 )25 (B3 Ba)
Y91 gy a3

%
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More than two variables?

dar B o4 41% 1000 475 Given p=22mm/h, what is the
‘o0 K= 1781 3 =1000352520 distribution of Q, and Q,?
12 475 520 272

N K1 213) —1
= + Yoa(a—p
g (ﬂz) (223 3 2)

A Y Y
%= ( . 12) - ( 13) Y (B3 Bg3)

221222 223

%
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More than two variables?

- _ )4 417 1000 475 Given p=22mm/h, what is the
‘ot p= 1781 = =1000 352520 distribution of Q; and Q,?
12 475 520 272

L (94) | (4T5\,. ., 100.5
= 22— 12) =
. (78) * (520) (27%)7( ) (85.1)
5
() e
B 23 . [4121000\  [475\, .., 4121000\  [309.5 338.8 1372.5 661.2
$ = = (272)~1 (475 520) = = =
1000 352 520 1000 352 338.8 370.9 661.2 854.1
> 5
Y= ( H 12) - ( 13) Y35 (Z13 Taz)

221222 223

%
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More than two variables?

& " 94 417 1000 475 Given p=22mm/h, what is the
Ty H=178] == 1000352520 | distribution of Q; and Q,?
12 475 520 272
Q,
1.0 1.0 =
Q, — Q1~N(94,41) — Q2~N(78,35)

-== Conditional Q, ~ N(100.5, 37.0) === Conditional Q> ~ N(85.1, 29.2)

%
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More than two variables?

200
‘ P —— UncoTu.:Iltlona! d|§tr|§ut|on 0.00014
YY) 175 4 ---- Conditional distribution
0.00012
150 -
0.00010
125
S 100 - 0.00008
19 0.00006
>0 0.00004
25
0.00002
0

0 25 50 75 100 125 150 175 200
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Contents — Multivariate distributions

Bivariate Normal pdf (p=0.77)
1. Recap & motivation

2. Set theory and basic operations

3. Continuous variables

a. Extension to multi

computations

000000

b. Measures of dependence

1 o
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What] s next? Bivariate Normal pdf (p=0.77) -

= There is more in the textbook!

9(Q1,02)

= . i
LA AP
e =
e

_——
=
—

S
N

= PA: let’s do cool 3D plots and contours

10

= Wednesday workshop: Starve or not to

-0.090

-0.075

starve?

r0.060

AX3 [tons]

-0.045

r0.030

r0.015 |

I G T O O I

-0.000 H¥

= Friday project: Gaussian & Furious!

]
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And enjoy the journey!
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