- Week14:
Univariate continuous distributions

Max Ramgraber

based on the slides of Patricia Mares Nasarre
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Deterministic and stochastic models

Deterministic models

In a deterministic model: if the input is ‘a’, the output will always be 'b’.

Deterministic

model

]
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Deterministic and stochastic models

Deterministic models
A deterministic model to predict weight from height: weight = 22.0 - height2

Deterministic

model

]
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Deterministic and stochastic models

Deterministic models

Is height really all we need?

Inputs:
height?
age? e
gender? Deterministic
lifestyle? model

all limbs?

hair length?
kidney stones?
tooth filling?
tapeworms?
inhaled helium?

22-9-2025 5




Deterministic and stochastic models

Deterministic models

Reality is complicated. Complexity

Affordability Fl__\j Accuracy
O—0O
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Deterministic and stochastic models

Stochastic models

Stochastic models do not always return the same output for the same input.

De

Stochastic
model

about 71.28kg -ish:
82.73kg
65.21kg

-i!U Delft 107.60kg 2, o 5005



Deterministic and stochastic models

Stochastic models

In a stochastic model: if the input is ‘a’, the output will be a random number from a distribution
around ’b’.

Stochastic
model

]
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Recall from lecture 1: three types of uncertainty

®

Aleatoric Epistemic Error
Inherent, irreducible Lack of knowledge, limits Deficiency in modelling
uncertainty in the system to what we can measure and simulation
— _
~

No matter the source of the uncertainty, we
represent it as a probability distribution.

]
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Probability distribution functions
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What 1s a univariate continuous distribution?

Univariate Continuous Distribution
A univariate function only A continuous variable A function that assigns
takes a single variable can be defined to an probability (densities) to
as input. arbitrary precision. a random variable.
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Continuous distribution functions - RVs

A continuous random variable X assigns a continuous numerical value to an outcome of a
random process.

Examples:
viral concentration cloud coverage precipitation temperature

A probability distribution relates the numeric value of a random variable to a probability.

]
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Continuous distribution functions — Axioms

Recall the axioms of probability (informally summarized):

1. The probability of any outcome is non-negative.
P(X;) >0
2. The probability of all mutually exclusive outcomes must sum to one.
Y P(X;) =1
i

3. The probability of a union of mutually exclusive outcomes is the sum of their probabilities.

P(Xl or X2) — P(Xl) —+ P(XQ)
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Continuous distribution functions — PDF

For continuous random variables, there are infinitely many mutually exclusive outcomes.

179

180

Height [cm]
etc.

181

Since the probability of each outcome must be non-negative (first axiom), and the sum of
these infinitely many probabilities must be one (second axiom), the probability of each
outcome must be infinitesimally small.

]
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Continuous distribution functions — PDF

In consequence, we define a probability density function (PDF). We can obtain probabilities

from this PDF through integration.

0.40 -

This is a Gaussian PDF:

o
w
)

o
w
o

1 ()2
f(a) =~ T
VvV 2mo?

o
N
w

o
'—I
w

Integrating this PDF over a range of
values returns the probability of x
taking on values in this range.

o
'_I
o

probability density function f(x)
o
N
o

%
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random variable x
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From PDF to CDF

= Probability density function (PDF) fx(z)

CDF of the Gaussian distribution
* Cumulative distribution function (CDF) F(z) = [*_ f(z)dz  F(z) = L (1 4 erf (w—ﬁ))

/2
0.5 1.0
— u=0,0=1 — u=0,0=1
0.4 0.8
)
0.3 1 yvi 0.6
- >,
2 o
Il
0.2 = 0.4 1
g
0.1 ~ 0.2
0.0 0.0
=3 =2 -1 0 1 2 3 4 -4 =3 =2 -1 0 1 2 3 4
X X

(; -4
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From PDF to CDF — non-exeedance

PDF

f_Jr;o fx(x)de =1

%
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-1 0 1 2 3

random variable x

F(x) =P[X = x]

CDF
1.0
084-cee——-=080 ___________ '
1
1
1
0.6 - I
1
1
1
:
0.4 4 |
1
1
|
0.2 1
1
1
1
1
0.0 T —
-3 -2 -1 0 1
random variable x
22-9-2025 17




From PDF to CDF

A CDF integrates pdf from —o to x.

Integrating a PDF over an interval | o 10 =
represents the probability that a value 0.35 4 o
from the distribution will fall within that 0.30 |
interval. 0.25 1 : 0.61
= 0.20 - &
In consequence, the CDF returns the 0.15- 20
non-exceedance probability P(X < x), 0101 0.2
which is the probability that a random %057 o
sample X will have a smaller or equal Eh— S = S
value to x.
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From PDF to CDF - exceedance

PDF

-3 -2 -1 0 1 2 3
random variable x

%
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CDF

1.0

probability
o
o

o
LN
I

0.2 1

T —
—— non-exceedance probability F(x) = P[X = x]

—— exceedance probability 1 — F(x) = P[X > x]

/—.—_

random variable x

22-9-2025

19




From PDF to CDF

The exceedance probability P(X > x)

is computed as 1 — F(x) and represents . g0 cDF
the prObabIIIty that a randOm Sample X 0.40 1 . —— non-exceedance probability F(x) = P[X < x]
. —— exceedance probability 1 — F(x) = P[X > x]
will have a larger value than x. 0.35 1 0.
0.30 1
Exceedance probabilities are important _°* 2997
for safety design. For instance, when =% - 8 0l
designing a dike, we might want to "
. 0.10 4
ensure that the wave height exceedance | 02
probability P(wave height > wave height) | | | . . | | |
1 I -3 -2 -1 0 1 2 3 -3 -2 -1 0 1
IS OW random variable x random variable x

%
TUDelft



How can we sample from a PDF?

Computers only generate
pseudo-random uniform
samples.

Sending these samples
through the inverse CDF
generates samples from
the corresponding PDF!

This interactive element is
also available in the
MUDE book.
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uniform random values

cumulative probability

= P(X £x)

F(x)

probability density

0.354
0.30+
0.25-
0.20+
0.15+
0.10+
0.054

0.00

Coooo00000
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How can we sample from a PDF?

Computers only generate
pseudo-random uniform
samples.

Sending these samples
through the inverse CDF
generates samples from
the corresponding PDF!

This interactive element is
also available in the
MUDE book.

%
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1.0

osh
069
0.4

0.2

uniform random values

0.0~

Different CDFs sample
different distributions!

cumulative probability

= P(X £x)

F(x)

probability density

1.0+
0.9+
0.8+
0.7
0.6+
0.5-
0.4+
0.3
0.2-
0.1+
0.0

1.04
0.9+
0.8+
0.7+
0.6
0.5+
0.4+
0.3
0.2
0.1+
0.0




Parameters in PDF and CDF — Gaussian distribution

- 1.0~
PDF 0.8
0.9+
I _;(@2 0.7- 08
L) = —C 2 2
f( ) /27 2 0.6+ 5 0.7-
= (T
L 0.5+ E_U'B_
£ 04- @ 0.5+
CDF: %’ 0.3- g E;'
5 3
F(z) = 1 (1+erf (2 - " o2-
(x) = L+ (1+er & -
2 2 0.1- 0.1-
U.U- T T T UU- T T T
4 2 0 2 4 4 2 0 2
X X
mean (location) standard deviation (scale)
0.00 1.00

]
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Join at: vevox.app ID: 112-614-867
Quiz: Which of these functions is a valid PDF? !_El F10

| =

Option A Option B Option C .
> 0.2 - > >
% 9 0.15 A 0 30 4
9 0.1- 9 S
z 2 0.10 - 220
§ 001 < 2
S 2 0.05 - FRUE
& 0.1 Q a

T T T 0.00 T T 0 T T T T
-2 0 2 -5 0 -2 0 2 4 -
random variable x random variable x random variable x
Option A Option B Option C
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= 114 Join at: vevox.app ID: 112-614-867 Showing Results

Quiz: Which of these functions is a valid PDF?

Option A Option B Option C
0.20 A 40 -
> 027 > >
g g 0.15 - g 30
2 0.1 9 35
z 2 0.10 - 220
g 001 2 8
5 2 0.05 - o 10 A
o _01 ] o o
T T T 0.00 - T T 0 1 T T T T
-2 0 2 -5 0 -2 0 2 4
random variable x random variable x random variable x
Option A 21.93% Option B 73.68% Option C 4.39%

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,




probability density

Quiz: Which of these functions is a valid PDF?

probability density

Option A
0.2 -
0.1 -
0.0 -
—-0.1 1
-2 0 2

random variable x

Not valid.
This function has

negative densities.

%
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Option B

probability density
N
o

-5

random variable x

Valid.

This function has only
positive densities and
integrates to one.

0

D
o
1

W
o
1

[
o
1

()
1

Option C

2 0 2 4
random variable x
Not valid.

This function does not
integrate to one.



Empirical distribution functions
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Continuous distribution functions

Mathematical model which relates the values of a random variable and their probability

But what do | want to model?

Observations =)  Empirical distribution function

We want a model which is able to reproduce the probabilistic behavior in the observations

%
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wind speed [m/s]

10 -

0

Empirical distribution functions

We can define an empirical PDF and empirical CDF from our observations. How? Let’s see it with

an example!

Wind speed in Delft on 16. Sep at 16:00 PM: 30.6 m/s

10/2024

01/2025

04/2025

time

07/2025

This is the wind speed in Delft at
10 m height over the past 365
days, taken from OpenMeteo.com.

You can access an interactive
real-time version of this in the
book!




wind speed [m/s]

40+
354
304
25+
204
15+
104

Empirical CDF

Wind speed in Delft on 16. Sep at 16:00 PM: 30.6 m/s

W

%
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time

We need to assign a non-exceedance probability

to each observation.

>> read observations

22-9-2025

31



Empirical CDF

We need to assign a non-exceedance probability
to each observation.

Wind speed in Delft on 16. Sep at 16:00 PM: 30.6 m/s >> read observations

wind speed [m/s]

>> x = sort observations in ascending order
'IU "I' w
>> length = the number of observations
>> non-exceedance probability = (range of
integer values from 1 \ to length) /
(length + 1)

time

%
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Empirical CDF

_ | We need to assign a non-exceedance probability
Wind speed in Delft on 16. Sep at 16:00 PM: 30.6 m/s (P=x = 98.8 %)

to each observation.

1.0+ pm—em————t St
0.9-
>> read observations

0.8-

0.7 >> x = sort observations in ascending order
. 07-
:-F;U
8 0.6 >> length = the number of observations
Q.
g 054 . q -
2 >> non-exceedance probability = (range of
& 044 integer values from 1 \ to length) /
[}]
S (length + 1)
< 0.3

0.2, >> Plot x versus non-exceedance probability

0.1-

0.0 T T T T T T T T 1

0 5 0 15 20 25 30 35 40

wind speed [m/s]

TUDelft



Empirical CDF

Let's do it slowly!

3.2
4.5
3.8

7.5

%
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Length =5

>> read observations

>> x = sort observations in ascending order

>> length = the number of observations

>> non-exceedance probability = (range of
integer wvalues from 1 \ to length) /
(length + 1)

>> Plot x versus non-exceedance probability



Empirical CDF

Let's do it slowly!

Lo [

3.2 2
4.5 3.2
3.8 3.8
7.5 4.5
2 7.5

]
TUDelft

1

2

Length =5

>> read observations

|>> X = sort observations in ascending order

|>> length = the number of observations

>> non-exceedance probability = (range of
integer wvalues from 1 \ to length) /
(length + 1)

>> Plot x versus non-exceedance probability

22-9-2025 35



1.0 1

Empirical CDF

0.8

0.6 1

Let’s do it slowly! Length =5 =
B -
1/6 = 0.17 > x
>> le a 0.0 2.5 5.0 7.5 100 125 150 175
4.5 3.2 2 2/6 = 0.33 ' ' ' " W (mis) ' ' '
>> non-exceedance probability = (range of
3.8 3.8 3 3/6 =0.5 integer wvalues from 1 \ to length) /
(length + 1)
7.5 4.5 4 4/6 = 0.67 >> Plot x versus non-exceedance probability
2 7.5 5 5/6 = 0.83

]
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Empirical PDF f(z) = F'(z) = limy, o LetA2)-F&

Wind speed in Delft at 16:00: 30.6 m/s (interval P=1.6 %) >> read observations
0.354 >> bin size = 5 #delta x
>> min value = minimum value of observations
0.30- max value = maximum value observations
n bins = (max value - min value)/bin size
0.25- bin edges = range of n bins + 1 values
> between the truncated value of min value
3 and the ceiling value of max value
Lgo.zo-
% >> bin count = empty list
50154 for each bin:
= append the number of observations between
the bin edges to count
0.10+
>> freq = count / number of observations
0.054 .y - . .
>> densities = freq / bin size
0.00 . r . 1 . . . ™ >> Plot barplot densities
0 5 10 15 20 25 30 35 40

wind speed [m/s]
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Let's collect some data!

We want to know you!

We would like to collect data about our
students that we can use for teaching in
future years. If you want to support us in
this, please fill in this anonymous poll and
tell us a little bit more about yourself.

Direct link:
https://forms.office.com/e/2yxYwYrrjQ

Let’'s have a break!

%
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Analyzing MUDE participants



https://forms.office.com/e/2yxYwYrrjQ

Let's continue
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Why non-Gaussian?

Concept of tail

%
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Does this look Gaussian?

pdf

0.40 -
0.12 -
0.35 -
0.10 - 0.30 -
0.08 1 0.25 -
Eo.zo-
0.06 -
This PDF has a tail 0.15 -
0.04 -
0.10 -
0.02 - 0.05 -
0.00 -
0.00 T T T T T T T T T T T T T T T T T
0.0 2.5 5.0 7.5 10. 12.5 15.0 17.5 -4 -3 -2 -1 0 1 2 3 4
Ws (m/: X
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Why 1s the tail important?

0.12 -

0.10 -

0.08 -

pdf

0.06 -

0.04 -

0.02 -

|
|
|
|
|
|
|
|
|
|
I
|
0.0 |_||M 75 100 125 [150] 175

Ws (m/s)

0.00

.
TUDelft

Task: You are designing a building against
wind loading. Which value would you base
your design on?

You vote!




S 98/98 Join at: vevox.app ID: 112-614-867 Question slide

Which design value would you choose?

2.5 m/s (mode of the empirical pdf)
[ | 0%
5.0 m/s (mean of the empirical pdf)

| 0%

15.0 m/s (approximate maximum of the observations)

| 0%
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m Join at: vevox.app ID: 112-614-867 Showing Results

Which design value would you choose?

2.5 m/s (mode of the empirical pdf)

(] | 4.08%

5.0 m/s (mean of the empirical pdf)

] | 15.31%

15.0 m/s (approximate maximum of the observations)

T so.61%

RESULTS SLIDE




We typically design to withstand extreme values

0.12 -

0.10 -

0.08 -

pdf

0.06 -

0.04 -

0.02 -

0.00

0.0 25

%
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5.0

75

10.0
Ws (m.fs)

12.5

15.0

17.5

We want the building to perform under
ordinary conditions (i.e., around the
central moments).

However, we also want the building to
withstand storms — hence it is critical to
plan for extremes!

Mind that tails can also be negative!

= E.g.: nutrients concentration to
ensure the survivability of species



Brief intro to a selection of
parametric distributions
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Parametric distributions in the book

N,
WO

Textbook

3.2. Empirical Distributions
3.3. Non-Gaussian distributions

3.4. Parametric

Distributions
Uniform distribution

| Gaussian distribution
Lognormal distribution
Gumbel distribution
Exponential distribution
Beta distribution

Summary of parametric
distributions

3.5 Lacation, Shape and Scale:
Consistent Parameterization

3.6. Fitting a Distribution

= @0 %10

Gaussian distribution

Most of you should have already encountered the Gaussian distribution (also sometimes known as the
Normal distribution) during your studies. This distribution is one of the most widely-used PDFs since it occurs
commonly in nature and engineering and has many elegant mathematical properties. The PDF of the Normal

distribution is given by

foyo L 3()

oV 2w

where z is the value of the random variable and ¢z € R and o € R are the two parameters of the distribution,

the mean and standard deviation. If we integrate the PDF, we obtain the CDF. In the case of the Normal

distribution, there is no closed form of the CDF, but it can be expressed as

F(z) = %(lJrerf(i\/g))

where erf denotes the error function given by

2 T,
erf(z) = ﬁfo e Udt

%
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Gaussian There exist many
Exponential more PDFs in the

literature.
Beta

Gumbel (left- and right-tailed)

Lognormal

Read about the other PDFs in the book.

What do | need to know?

how the distribution looks (PDF/CDF),

how it responds to changes in the
parameters, and

some basic properties like symmetry
and bounds.



Exponential distribution

An exponential distribution has a
single rate parameter A.

The distribution has a left bound and
a right tail.

The exponential PDF describes
Poisson processes, which are
memoryless. This means the chance
of future events does not depend on
the past.

Examples: survival rate of a species,
radioactive decay

%
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Beta distribution

= A beta distribution is defined by two

parameters: a and

= A beta distribution has a left bound
and a right bound. Depending on the
parameters, it can be symmetric or

skew in either direction.

%
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Beta distribution

= A beta distribution is defined by two
parameters: a« and

= A beta distribution has a left bound
and a right bound. Depending on the
parameters, it can be symmetric or
skew in either direction.

= The beta PDF describes a distribution
for the expected value of a Bernoulli
process.

%
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Beta distribution (a = 3/ 8 = 4)

probability density function f(x)

0.00

random varia bIe X

00000



Beta distribution

parameters: a« and

= A beta distribution has a left bound
and a right bound. Depending on the
parameters, it can be symmetric or

skew in either direction.

= The beta PDF describes a distribution
for the expected value of a Bernoulli

process.

= Examples: coin fairness, chance of

instrument failure

%
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A beta distribution is defined by two
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0.2
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Gumbel distribution

A Gumbel distribution has a location
and a scale parameter

A Gumbel distribution has no
bounds and either a left tail or a
right tail. The left and right-tailed
Gumbel are different distributions.

The Gumbel PDF is important in
extreme value analysis

Examples: annual maximum daily
rainfal, maximum material load
before failure

%
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0.60 -
0.55-
0.50-

2045~

B0.40

20.35-

20.30 -

£0.25-

80.20-

“0.15-
0.10-

0.05+

0.00

location

0.00

=
5 04-
=




Fitting distribution functions

%
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Fitting distributions

Setup:
= An empirical distribution

= A parametric distribution function
(e.g.: Gumbel)

Question:

Which parameter values generate the
distribution that best fits our data?

Different fitting methods:
Method of moments and MLE.

%
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How to choose the parametric
distribution function:

next part of the lecture!




Method of moments

Basic idea:

Equate the moments of the observations to those of the distribution function, then
solve for the parameters.

Example: Moments for the Gumbel distribution

EX|=pu+~8  ~y=~o0577 —— Mean of the observations

Var|X| = %2 B2 »  Variance of the observations

%
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Method of moments - Example

Setup: Gumbel distribution:

The intensity of earthquakes in Rome (ltaly)

is a random process. EX|=p+~y8  y=0577
Using the ‘Catalogo dei terremoti italiani Var|X] = 2 i

dall’anno 1000 al 1980 (the Catalog of Italian arial =

earthquakes from year 1000 to 1980) edited

by D. Postpischl in 1985, we want to fit a Substitute in the data moments:
Gumbel distribution to the observations
using the method of moments. 3.02=p+0.5778 » Solve for u

0.99 = %ZB2 » Solve for B

Data moments:
Th ~ 2. dB~0.77.
= Mean intensity = 3.02 us, u ~ 2.57 and f ~ 0.77

= Variance of intensity = 0.99

%
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Assessing the goodness of fit

%
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How do I choose a distribution?

Decision factors: EXAMPLE:

: : . * Toy dataset
= Physical constrains (e.g., non-negativity) . Exponential or Gaussian?

= Statistics of the observations

1.0+
0.06

Goodness of fit techniques can supportthe . 081
decision in a quantifiable way:

0.04 4 0.6 -

= QObijective way to compare models 5

PLX = x]

0.03
0.4

= You may obtain contradictory results!

0.02 1

0.2 +
0.01 4

= As professionals, the choice is yours!

000 T T T T 00 - T
0 10 20 30 0
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Graphical methods — QQ plot

A Quantile-Quantile plot (QQ plot) plots the
empirical against the predicted quantiles of the
fitted distribution.

1. Compute the quantiles/non-exceedance
probabilities of the observations

2. Evaluate the corresponding values from
the fitted distribution via F~1(x)

3. Plot observations against predictions; 45
degree-line is the perfect fit

Advantages:
simple | fast to implement | central moments + tail

%
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Theoretical quantiles

30

25 1

20 A

15 4

10

-10

@
o

N(5.17, 5.76)
Expon(-5.25, 10.42)

0

-10

5 0 5 10 15
Empirical quantiles

20

25

30



Graphical methods — log-scale

In a log-scale plot, we compare the
exceedance probabilities P(X > x) of
the observations and fitted distribution
in log scale.

1. Compute empirical exceedance
probabilities via 1 — F(x)

2. Plot and compare empirical and
fitted exceedance probabilities in
semi-log scale

Advantages:

1.0 1

0.8 4

0.6 -

PIX = x]

0.4

0.2

0.0 -

—— N(5.17, 5.76)
— Expon(-5.25, 10.42)
® Observations

-10

0 10 20 30 40

simple | fast to implement | focus on the tail: key element!

%
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— N(5.17, 5.76)
—— Expon(-5.25, 10.42)
® Observations




Formal hypothesis tests — Kolmogorov-Smirnov

The Kolmogorov-Smirnov test (also
known as the KS-test) is a widely used
nonparametric hypothesis test based on
comparing two CDFs.

It comes in one of two variants:
= Two sets of samples: same population?

= One set of samples: goodness-of-fit of
a fitted distribution

%
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I HypotheS|s tests:

I

I'H,: null hypothesis

: H,: alternative hypothesis

: Statistic ~ distribution — p-value
| p-value: P(data as extreme as observed | Hy)
|

I Significance (typically a = 0.05)

|

l'If p-value < a: we reject H,

' If p-value > a: we cannot reject H,



Formal hypothesis tests — Kolmogorov-Smirnov

One set of samples:
goodness-of-fit of a fitted distribution

= Null hypothesis H, :
our samples follow the fitted distribution
Hy:E~F

= KS statistic: (roughly) the maximum
distance between the ECDF and the

fitted CDF

= P-value > o = 0.05 — We cannot
reject Hy, i.e., that the observations
follow the distribution

%
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P[X = x]

Maximum distancel

D,, = sup,|F(z) — F(z)|

10 15 20 25 30




Formal hypothesis tests — Kolmogorov-Smirnov

Example:
Here, our null hypothesis is
0.8 -
Hy: F~Fy
(observations follow a normal distribution) 0.6
v
a3
= P-value =0.93 " 04
= P-value =0.93> o = 0.05 — We cannot
reject H,, i.e., that the observations follow 0.2 1
a Normal distribution
0.0

%
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1.0 -

Maximum distancel

Normal distribution

D,, = sup,|F(z) — F(z)|

5 10 15 20 25 30



What's next?

= There is more in the textbook:

= Interactive elements!
= Parameterization!
= Wednesday workshop:
concrete or air temperature
= Friday project: your choice!
= Wind gust factor in Delft

= Traffic density in Finland

= Flow velocity of the river Thames
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Summary of parametric distributions

Here a summary of the main equations for each of the presented distirbution functions is presented.

I @ MUDE exam information

Choosing a distribution

Click to show

If you need help to choose a distribution type for your data, the table below may help you make a choice:

Distribution left bound right bound left-tailed symmetric right-tailed scipy name
Uniform yes yes no yes no uniform
Gaussian no no no yes no norm
Lognormal yes no no no yes lognorm
Gumbel (right-tailed) no no no no yes gumbel r
Gumbel (left-tailed) no no yes no no gumbel |
exponential yes no no no yes expon
beta yes yes possible possible  possible beta

@ Notation

One challenge when dealing with distributions is notation, for two main reasons: 1) the symbols used

to represent random variables and parameters varv across different fields (and even within a aiven



Let's collect some data!

We want to know you!

We would like to collect data about our
students that we can use for teaching in
future years. If you want to support us in
this, please fill in this anonymous poll and
tell us a little bit more about yourself.

Direct link:
https://forms.office.com/e/2yxYwYrrjQ

Enjoy the journey!
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Analyzing MUDE participants



https://forms.office.com/e/2yxYwYrrjQ

And enjoy the journey!

%
TUDelft
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