
Ronald Brinkgreve, Anna Störiko

Based on a previous version from Jaime Arriaga and 
the rest of the MUDE team

CEGM1000
Modelling, Uncertainty 
and Data for Engineers

Week 1.3
Numerical modelling 
(Beyond Fundamentals)

1

file:///D:/Documents/Ppoint/CEGM1000_MUDE/Numerical Modelling/ding-47489.mp3


At the end of this lecture, you should be able to

• Discuss the characteristics of Explicit and Implicit 
Numerical schemes

• Schematize numerical solutions of ODEs

• Solve initial and boundary value problems 
numerically
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Learning objectives
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Contents

• Explicit and Implicit numerical schemes: 
single step

  - Initial Value Problems

• Multiple-step and multi-stage schemes
  - Initial Value Problems

• Second order ODEs
  - Boundary Value Problems



Explicit Euler (Euler Forward)
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𝑡𝑖+1 = 𝑡𝑖 + Δ𝑡

𝑦𝑖+1 = 𝑦𝑖 + Δ𝑡 ∗ 𝑠𝑙𝑜𝑝𝑒𝑖

𝑦1 = 𝑦0 + Δ𝑡 ∗ 𝑠𝑙𝑜𝑝𝑒0

The slope is computed using the 

Forward Difference formula,    

first-order accurate.

Truncation error = 𝑦1
𝑇𝑆𝐸 − 𝑦1

𝐹𝐸

= 𝑦0 + Δ𝑡𝑦0
′ +

Δ𝑡2

2!
𝑦′0

′ + ⋯ − (𝑦0 + Δ𝑡𝑦0
′ )

=Δ𝑡2

2!
𝑦′0

′ + ⋯ ≈ 𝑂(Δ𝑡2)



Explicit Euler (Euler Forward)
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𝑡𝑖+1 = 𝑡𝑖 + Δ𝑡

𝑦𝑖+1 = 𝑦𝑖 + Δ𝑡 ∗ 𝑠𝑙𝑜𝑝𝑒𝑖

𝑦2 = 𝑦1 + Δ𝑡 ∗ 𝑠𝑙𝑜𝑝𝑒1

= ෍

𝑖=0

𝑛−1

𝑦𝑖+1
𝑇𝑆𝐸 − 𝑦𝑖+1

𝐹𝐸Total truncation error

= ෍

𝑖=0

𝑛−1
Δ𝑡2

2!
𝑦′𝑖

′ + ⋯ ≈
Δ𝑡2

2!

𝑏 − 𝑎

Δ𝑡
𝑦′𝑖

′

≈
Δ𝑡

2!
(𝑏 − 𝑎)𝑦′′  ≈ 𝑂(Δ𝑡)



Implicit Euler (Euler Backward)
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𝑡𝑖+1 = 𝑡𝑖 + Δ𝑡

𝑦𝑖+1 = 𝑦𝑖 + Δ𝑡 ∗ 𝑠𝑙𝑜𝑝𝑒𝑖+1

𝑦1 = 𝑦0 + Δ𝑡 ∗ 𝑠𝑙𝑜𝑝𝑒1

The slope is computed using the 

Backward Difference formula, first-

order accurate.

Total truncation error ≈ 𝑂(Δ𝑡)



Stability
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𝑑𝑦

𝑑𝑡
= −𝛼𝑦

Stability criterion for Explicit Euler:

Exact solution: 𝑦(𝑡) = 𝑒−𝛼𝑡

∆𝑡 <
2

𝛼

ODE:

Implicit Euler is unconditionally stable; this does NOT mean it is more accurate!

Note that the solution may already become highly inaccurate before the limit!
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Let’s start with a simple example: The Falling Head test

Exact solution:

ODE:

ℎ 𝑡 = ℎ0 𝑒−
𝑘𝐴𝑡
𝑎𝐿

Initial value:      at t = t0:  h = h0

k 10-6 m/s

A 0.1 m2

a 0.001 m2

L 0.1 m

h0 1.0 m

𝑑ℎ

𝑑𝑡
= −

𝑘𝐴

𝑎𝐿
ℎ

Purpose of the test on a soil sample:

To measure hydraulic conductivity k

True solution
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Let’s start with a simple example: The Falling Head test

𝑑ℎ

𝑑𝑡
= −

𝑘𝐴

𝑎𝐿
ℎ

Explicit Euler:

ODE:

ℎ 𝑡𝑖+1 − ℎ 𝑡𝑖

∆𝑡
= −

𝑘𝐴

𝑎𝐿
ℎ(𝑡𝑖)

Initial value:      at t = t0:  h = h0

ℎ 𝑡𝑖+1 = ℎ 𝑡𝑖 −∆𝑡
𝑘𝐴

𝑎𝐿
ℎ(𝑡𝑖)⇒

Stability: ∆𝑡 < 2
𝑎𝐿

𝑘𝐴
 = 2000 s

= 1 − ∆𝑡
𝑘𝐴

𝑎𝐿
ℎ 𝑡𝑖
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Let’s start with a simple example: The Falling Head test

𝑑ℎ

𝑑𝑡
= −

𝑘𝐴

𝑎𝐿
ℎ

Implicit Euler:

ODE:

ℎ 𝑡𝑖+1 − ℎ 𝑡𝑖

∆𝑡
= −

𝑘𝐴

𝑎𝐿
ℎ(𝑡𝑖+1)

Initial value:      at t = t0:  h = h0

ℎ 𝑡𝑖+1 1 + ∆𝑡
𝑘𝐴

𝑎𝐿
= ℎ 𝑡𝑖

Stability: Not an issue (unconditionally stable)

ℎ 𝑡𝑖+1 = ℎ 𝑡𝑖 / 1 + ∆𝑡
𝑘𝐴

𝑎𝐿

⇒
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Let’s start with a simple example: The Falling Head test

Comparison of solutions:

ODE:

Initial value:      at t = t0:  h = h0

𝑑ℎ

𝑑𝑡
= −

𝑘𝐴

𝑎𝐿
ℎ



Multi-step methods
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- Adams-Bashfort are explicit methods of 
higher accuracy

- AB is not self starting!

- Adams-Moulton is an implicit method 
of higher accuracy 

- AM is self starting but requires 
iterations

Adams-Bashfort 
second order accurate

𝑦𝑖+1 = 𝑦𝑖 +
Δ𝑡

2
3𝑦𝑖

′ − 𝑦′𝑖−1  

Not enough info at 𝑡1

Multi-step means:

To calculate a new point, it uses 
more than one previous point



Multi-stage methods
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- Modified Euler

- Midpoint 

- Heun’s method 
    (= 2-stage RK)

- 4-stage Runge-Kutta

𝑦𝑖+1 = 𝑦𝑖 + Δ𝑡 𝑦′
𝑖+

1
2

∗

𝑦𝑖+1 = 𝑦𝑖 + Δ𝑡 (𝑦′𝑖 + 𝑦′𝑖+1∗)/2

𝑦𝑖+1 = 𝑦𝑖 + Δ𝑡 𝑘1 + 𝑘2 / 2

The main error of simple single step 
methods is assuming that the slope does 
not change between 𝑖 and 𝑖 + 1

𝑘1  = 𝑦′𝑖  

𝑘2  = 𝑦′𝑖+1∗ 𝑤𝑖𝑡ℎ 𝑦𝑖+1∗ = 𝑦𝑖 + Δ𝑡 𝑘1

Multi-stage means:

To calculate a new point, it 

uses intermediate estimates 
of the new point
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Back to our simple example: The Falling Head test

Comparison of solutions:

ODE:

Initial value:      at t = t0:  h = h0

𝑑ℎ

𝑑𝑡
= −

𝑘𝐴

𝑎𝐿
ℎ



Non-linear ODE 
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Euler forward (explicit):

Can be solved directly

Euler backward (implicit):

Can only be solved iteratively



Non-linear ODE: Newton-Raphson (iterative) method 
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𝑧𝑖+1 = 𝑧𝑖 −
𝑔(𝑧𝑖)

𝑔′(𝑧𝑖)
Newton-Raphson updating:
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Let’s take a break..
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Please, take a seat…

file:///D:/Documents/Ppoint/CEGM1000_MUDE/Numerical Modelling/ding-47489.mp3
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Example: Non-linear stress-strain relation in one-dimensional compression

Stress-strain relationship:

As ODE:

with

Explicit Euler:

Oedometer test: to measure soil compressibility (or stiffness)

d

d

stiffness at ref. stress

d 
d

 ref
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Implicit Euler:

Example: Non-linear stress-strain relation in one-dimensional compression

Possible solution:

(solved iteratively)

Not so good solution:

(requires more 

 iterations)

d

d

ODE:
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Best solution (least number of iterations): 

Implicit Euler with Newton-Raphson iterations:

with

Example: Non-linear stress-strain relation in one-dimensional compression
d

d

ODE:
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Comparison of solutions:

Final sample height:

Example: Non-linear stress-strain relation in one-dimensional compression
d

d

ODE:



Second order ODE

30

➔ IVP

➔ BVP



Second order ODE: Boundary Conditions
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- Dirichlet 

- Neumann

- Mixed



Join the Vevox session

Go to vevox.app

Enter the session ID: 123-957-664

Or scan the QR code



Give an example of a Neumann boundary 
condition for a deformation or a flow problem

0/0 Question slideJoin at: vevox.app ID: 123-957-664



Give an example of a Neumann boundary 
condition for a deformation or a flow problem

0 Showing ResultsJoin at: vevox.app ID: 123-957-664

RESULTS SLIDE



Exercise – Temperature distribution across a thin plate
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with the conditions:  T(0) = 473[K], T(0.1) = 293[K]

𝑓′′ 𝑥𝑖  
𝑓 𝑥𝑖−1 − 2𝑓 𝑥𝑖 + 𝑓(𝑥𝑖+1)

(∆𝑥)2

𝑓′′ 𝑥0  
𝑓 𝑥0 − ∆𝑥 − 2𝑓 𝑥0 + 𝑓(𝑥0 + ∆𝑥)

(∆𝑥)2

Central Difference scheme:
Consider the following differential equation:

𝑑2𝑇

𝑑𝑥2 = 𝛼 𝑇 − 𝑇𝑠        or     𝑑2𝑇

𝑑𝑥2 − 𝛼 𝑇 − 𝑇𝑠 = 0

Elaborate the general numerical equation in Ti-1 , Ti , Ti+1 according to the Central Difference scheme.

Elaborate the scheme further using 3 inner grid points and add the boundary conditions.
(i.e. consider i = 1, 2, 3 in the equation and apply the boundary conditions at the end points i = 0, 4)

Formulate the result as a matrix-vector system.

x

Δx

inner points
end points

1D grid

i=0 i=4

orin the domain x ∈ (0, 0.1)

What type of boundary conditions are these?



Exercise – Temperature distribution across a thin plate
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𝑇𝑖−1 − 2𝑇𝑖 + 𝑇𝑖+1

∆𝑥2 − 𝛼 𝑇𝑖 − 𝑇𝑠 = 0 𝑇𝑖−1 − 2𝑇𝑖 + 𝑇𝑖+1  − 𝛼∆𝑥2 𝑇𝑖 − 𝑇𝑠 = 0

𝑇𝑖−1 − (2 +𝛼∆𝑥2)𝑇𝑖 +𝑇𝑖+1 = 𝛼∆𝑥2𝑇𝑠

𝑇0 − (2 +𝛼∆𝑥2)𝑇1 + 𝑇2 =  𝛼∆𝑥2𝑇𝑠

𝑇1 − (2 +𝛼∆𝑥2)𝑇2 + 𝑇3 =  𝛼∆𝑥2𝑇𝑠

𝑇2 − (2 +𝛼∆𝑥2)𝑇3 + 𝑇4 =  𝛼∆𝑥2𝑇𝑠

𝑇0  =  𝑇(0)

𝑇4 =  𝑇(0.1)



1 0 0 0 0
1 −(2 + 𝛼∆𝑥2) 1 0 0

0 1 −(2 + 𝛼∆𝑥2) 1 0

0 0 1 −(2 + 𝛼∆𝑥2) 1
0 0 0 0 1

𝑇0

𝑇1

𝑇2

𝑇3

𝑇4

=

𝑇(0)

𝛼∆𝑥2𝑇𝑠

𝛼∆𝑥2𝑇𝑠

𝛼∆𝑥2𝑇𝑠

𝑇(0.1)

What do you notice? Why?

i = 1

i = 2

i = 3



Example: Euler-Bernoulli beam deflection
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M = bending moment

w  = beam deflection (lateral displacement)

EI = flexural rigidity (bending stiffness)

q  = distributed load

Central difference scheme for both equations:

or 

or 

and 



Consider a simply supported beam at both ends with the following boundary conditions:

at x = 0: w = 0 and M = 0

at x = L: w = 0 and M = 0

First, solve the bending moments:

This gives a system of equations: A M = f    => M = A-1 f  (in Python: M = numpy.linalg.solve(A,f)

            A   M  f

Example: Euler-Bernoulli beam deflection
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1 0 0 0
1 −2 1 0 0
0 1 −2 1

⋱ ⋱ ⋱
1 −2 1 0

0 0 1 −2 1
0 0 0 1

𝑀𝑖
=  

0

−∆𝑥2𝑞𝑖

0 Boundary conditions



Consider a simply supported beam at both ends with the following boundary conditions:

at x = 0: w = 0 and M = 0

at x = L: w = 0 and M = 0

Then, solve the beam deflections:

This gives a system of equations: A w = f    => w = A-1 f  (in Python: w = numpy.linalg.solve(A,f)

            A   w  f

Example: Euler-Bernoulli beam deflection
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1 0 0 0
1 −2 1 0 0
0 1 −2 1

⋱ ⋱ ⋱
1 −2 1 0

0 0 1 −2 1
0 0 0 1

𝑤𝑖 =  

0

−∆𝑥2𝑀𝑖/𝐸𝐼

0 Boundary conditions



Alternatively, both differential equations can be solved simultaneously:

     (RHS term is now integrated in the matrix)

Example: Euler-Bernoulli beam deflection

40





Alternatively, both differential equations can be solved simultaneously:

Example: Euler-Bernoulli beam deflection
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1 0  0 0
1  −2 1 0 0
0 1  −2 1

⋱ ⋱ ⋱
1  −2 1 0

0 0  1  −2 1
0  0  0 1

0

0
∆𝑥2/𝐸𝐼

∆𝑥2/𝐸𝐼

⋱
∆𝑥2/𝐸𝐼

∆𝑥2/𝐸𝐼

0

1
1 −2 1

1 −2 1
⋱ ⋱ ⋱

1 −2 1
1 −2 1

1

𝑀𝑖

𝑤𝑖

=   

0

−∆𝑥2𝑞𝑖

0
0

0

0

Boundary conditions



Results for L=10m, EI=106 kNm2, q=-10 kN/m2, Δx=0.1

Example: Euler-Bernoulli beam deflection

42
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Summary

• Differential equations:
- Initial Value Problems
- Boundary Value Problems

• Numerical solutions:
- Explicit Euler  Stability criterion!
- Implicit Euler
- Example: Falling head test

• Non-linear ODE: Iterative solution (Newton-Raphson):
• Multiple-step and multi-stage schemes

- Heun
- Runge-Kutta

• Second order ODEs
- Boundary Value Problems
- Example: Bending beam



What you can expect further this week…
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• Programming Assignment 1.3:
- Coding collaboration using VS Live Share
- Code completion using IntelliSense
- Programming: Matrix and vector manipulations

• Wednesday 10:45-12:30: Workshop 1.3:
- Solving initial value problem: Falling head test (hydraulic conductivity)
- Solving boundary value problem: Bending beam
- Solving two coupled ODEs in one system

• Friday 9:45-12:30: Group Assignment 1.3:
- Solving non-linear ODE (initial value problem) using Newton-Raphson iterations:
      Hydrological discharge model



Ronald Brinkgreve, Anna Störiko, Jaime Arriaga

r.b.j.brinkgreve@tudelft.nl•

Join us for the information session on
the Geotechnical Engineering track

Tuesday 16 September 12:45-13:30 room D

25
sept

Geodrinks XL 

(FREE pizza & drinks)

17:00 in exhibition room (glass 
part 1st floor)
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