CEGM1000 Modelling, Uncertainty and Data for Engineers

Week 1.3
Numerical modelling
(Beyond Fundamentals)

Ronald Brinkgreve, Anna Störiko

Based on a previous version from Jaime Arriaga and the rest of the MUDE team

TUDelft

Learning objectives

At the end of this lecture, you should be able to

- Discuss the characteristics of Explicit and Implicit Numerical schemes
- Schematize numerical solutions of ODEs
- Solve initial and boundary value problems numerically

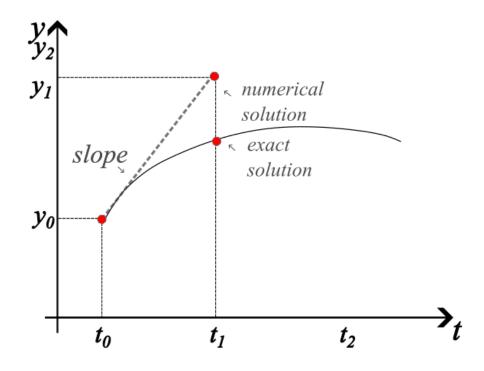
Contents

- Explicit and Implicit numerical schemes: single step
 - Initial Value Problems

- Multiple-step and multi-stage schemes
 - Initial Value Problems

- Second order ODEs
 - Boundary Value Problems

Explicit Euler (Euler Forward)



$$t_{i+1} = t_i + \Delta t$$

$$y_{i+1} = y_i + \Delta t * slope_i$$

$$y_1 = y_0 + \Delta t * slope_0$$

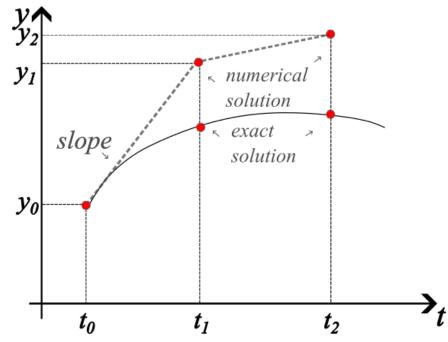
The slope is computed using the Forward Difference formula, first-order accurate.

Truncation error =
$$y_1^{TSE} - y_1^{FE}$$

$$= y_0 + \Delta t y_0' + \frac{\Delta t^2}{2!} y_0'' + \dots - (y_0 + \Delta t y_0')$$

$$= \frac{\Delta t^2}{2!} y_0'' + \dots \approx O(\Delta t^2)$$

Explicit Euler (Euler Forward)



$$t_{i+1} = t_i + \Delta t$$

$$y_{i+1} = y_i + \Delta t * slope_i$$

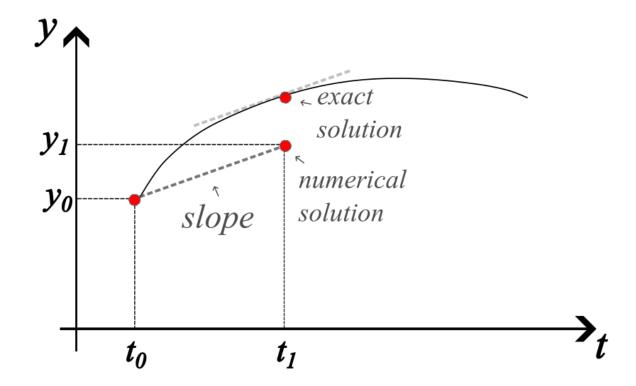
$$y_2 = y_1 + \Delta t * slope_1$$

Total truncation error =
$$\sum_{i=0}^{n-1} y_{i+1}^{TSE} - y_{i+1}^{FE}$$

$$= \sum_{i=0}^{n-1} \frac{\Delta t^2}{2!} y''_i + \dots \approx \frac{\Delta t^2}{2!} \frac{b-a}{\Delta t} y''_i$$

$$\approx \frac{\Delta t}{2!} (b - a) \overline{y''} \approx O(\Delta t)$$

Implicit Euler (Euler Backward)



$$t_{i+1} = t_i + \Delta t$$

$$y_{i+1} = y_i + \Delta t * slope_{i+1}$$

$$y_1 = y_0 + \Delta t * slope_1$$

The slope is computed using the Backward Difference formula, first-order accurate.

Total truncation error $\approx O(\Delta t)$

Stability

ODE:
$$\frac{dy}{dt} = -\alpha y$$

Exact solution:
$$y(t) = e^{-\alpha t}$$

Stability criterion for **Explicit Euler**:
$$\Delta t < \frac{2}{\alpha}$$

Note that the solution may already become highly inaccurate before the limit!

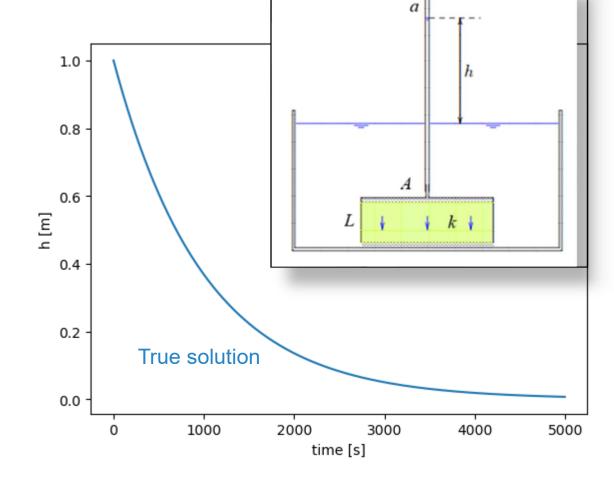
Implicit Euler is unconditionally stable; this does NOT mean it is more accurate!

ODE:
$$\frac{dh}{dt} = -\frac{kA}{aL}h$$

Initial value: at $t = t_0$: $h = h_0$

Exact solution: $h(t) = h_0 e^{-\frac{kAt}{aL}}$

k	10 ⁻⁶	m/s
А	0.1	m²
а	0.001	m²
L	0.1	m
h _o	1.0	m



Purpose of the test on a soil sample: To measure hydraulic conductivity *k*

ODE:

$$\frac{dh}{dt} = -\frac{kA}{aL}h$$

Initial value:

at
$$t = t_0$$
: $h = h_0$

Explicit Euler:

$$\frac{h(t_{i+1}) - h(t_i)}{\Delta t} = -\frac{kA}{aL}h(t_i)$$

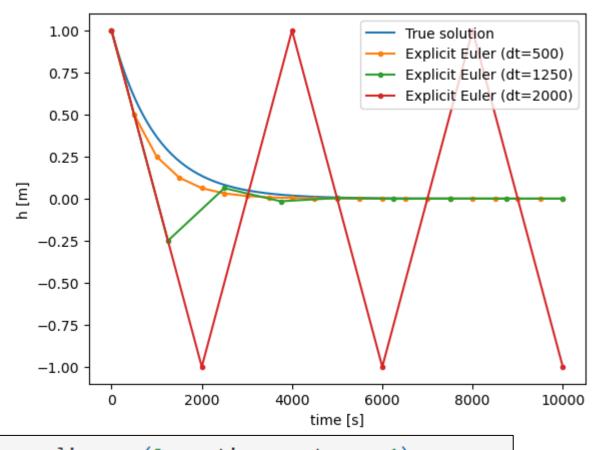
$$\Rightarrow$$

$$h(t_{i+1}) = h(t_i) - \Delta t \frac{kA}{aL} h(t_i)$$

$$= \left(1 - \Delta t \frac{kA}{aL}\right) h(t_i)$$

Stability:

$$\Delta t < 2 \frac{aL}{kA} = 2000 \text{ s}$$



```
t_n = np.linspace(0, maxtime, n_steps + 1)
h_EF = []
h_EF.append(h0)
for i in range(n_steps):
    h_new = (1.0 - dt * k * A / (a * L)) * h_EF[-1]
    h_EF.append(h_new)
```

ODE:
$$\frac{dh}{dt} = -\frac{kA}{aL}h$$

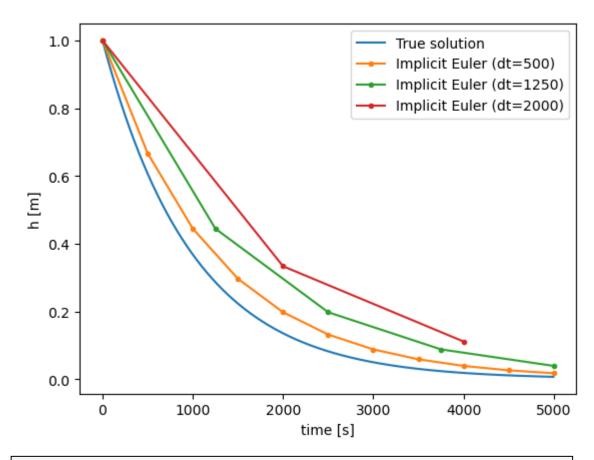
Initial value: at $t = t_0$: $h = h_0$

Implicit Euler:
$$\frac{h(t_{i+1}) - h(t_i)}{\Delta t} = -\frac{kA}{aL}h(t_{i+1})$$

$$\Rightarrow h(t_{i+1})\left(1+\Delta t\frac{kA}{aL}\right) = h(t_i)$$

$$h(t_{i+1}) = h(t_i) / \left(1 + \Delta t \frac{kA}{aL}\right)$$

Stability: Not an issue (unconditionally stable)

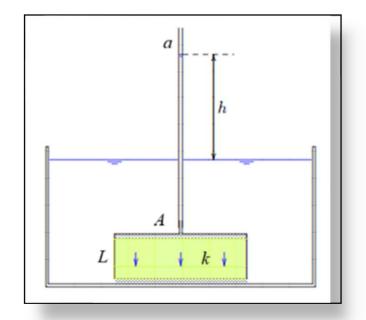


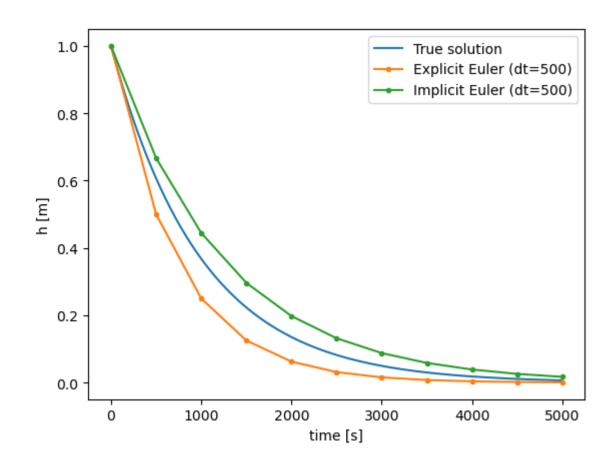
```
h_EB = []
h_EB.append(h0)
for i in range(n_steps):
    h_new = h_EB[-1] / (1.0 + dt * k * A / (a * L))
    h_EB.append(h_new)
```

ODE:
$$\frac{dh}{dt} = -\frac{kA}{aL}h$$

Initial value: at $t = t_0$: $h = h_0$

Comparison of solutions:





Multi-step methods

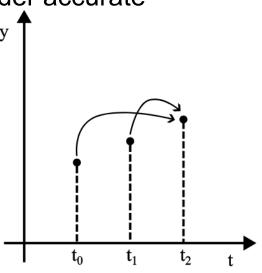
Adams-Bashfort second order accurate

$$y_{i+1} = y_i + \frac{\Delta t}{2} (3y_i' - y_{i-1}')$$

Not enough info at t_1

- Adams-Bashfort are explicit methods of higher accuracy
- AB is not self starting!

- Adams-Moulton is an implicit method of higher accuracy
- AM is self starting but requires iterations

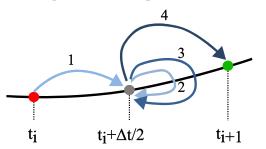


Multi-step means:
To calculate a new point, it uses
more than one previous point

Multi-stage methods

The main error of simple single step methods is assuming that the slope does not change between i and i+1

- Modified Euler
- Midpoint
- Heun's method(= 2-stage RK)
- 4-stage Runge-Kutta



$$y_{i+1} = y_i + \Delta t (y'_i + y'_{i+1^*})/2$$

$$y_{i+1} = y_i + \Delta t \ y'_{i+\frac{1}{2}^*}$$

$$y_{i+1} = y_i + \Delta t (k_1 + k_2) / 2$$

 $k_1 = y'_i$
 $k_2 = y'_{i+1*} \text{ with } y_{i+1*} = y_i + \Delta t k_1$

$$y_{i+1} = y_i + rac{\Delta t}{6}(k_1 + 2k_2 + 2k_3 + k_4) + \mathcal{O}(\Delta t^5)$$

$$egin{cases} k_1 &= y_i' \ k_2 &= y_{i+1/2}' ext{ with } y_{i+1/2} = y_i + rac{\Delta t}{2} k_1 \ k_3 &= y_{i+1/2}' ext{ with } y_{i+1/2} = y_i + rac{\Delta t}{2} k_2 \ k_4 &= y_{i+1}' ext{ with } y_{i+1} = y_i + \Delta t \ k_3 \end{cases}$$

Multi-stage means: To calculate a new point, it uses intermediate estimates of the new point

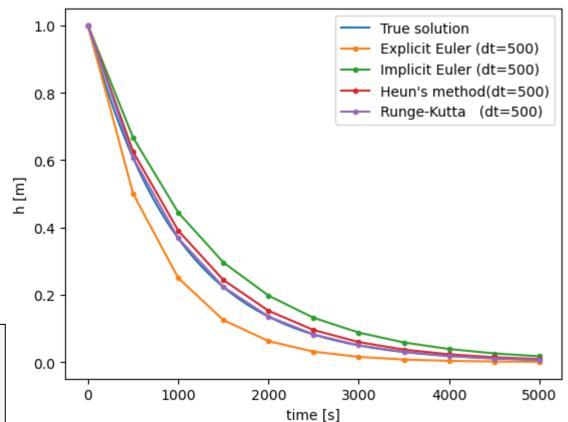
Back to our simple example: The Falling Head test

ODE:
$$\frac{dh}{dt} = -\frac{kA}{aL}h$$

Initial value: at $t = t_0$: $h = h_0$

Comparison of solutions:

```
h_RK4 = []
h_RK4.append(h0)
for i in range(n_steps):
    fac = -k * A / (a * L)
    k1 = fac * h_RK4[-1]
    k2 = fac * (h_RK4[-1] + dt / 2 * k1)
    k3 = fac * (h_RK4[-1] + dt / 2 * k2)
    k4 = fac * (h_RK4[-1] + dt * k3)
    h_new = h_RK4[-1] + dt / 6 * (k1 + 2 * k2 + 2 * k3 + k4)
    h_RK4.append(h_new)
```



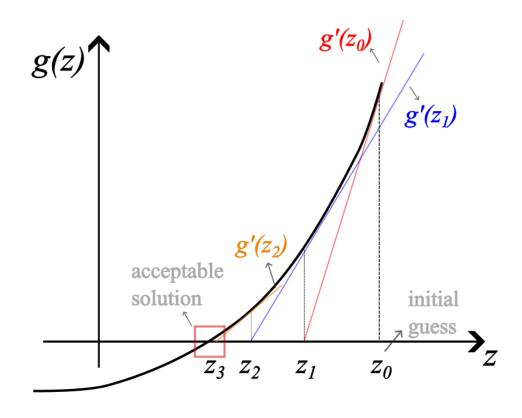
Non-linear ODE

$$rac{dp(t)}{dt} = -p^{3/2} + 5 \cdot p_{cst} (1 - e^{-t})$$

$$p_{i+1} = p_i + \Delta t \left(-p_i^{3/2} + 5 p_{cst} \cdot (1 - e^{-t_i})
ight) \qquad \qquad p_{i+1} = p_i + \Delta t \left(-p_{i+1}^{3/2} + 5 p_{cst} * (1 - e^{-t_{i+1}})
ight)$$

Euler forward (explicit): Can be solved directly Euler backward (implicit): Can only be solved iteratively

Non-linear ODE: Newton-Raphson (iterative) method



Newton-Raphson updating:

$$z_{i+1} = z_i - \frac{g(z_i)}{g'(z_i)}$$

Let's take a break..

Please, take a seat...

Oedometer test: to measure soil compressibility (or stiffness)

Stress-strain relationship:

$$d\sigma = C \left(\frac{\sigma}{\sigma^{ref}} \right)^m d\varepsilon$$
stiffness at ref. stress

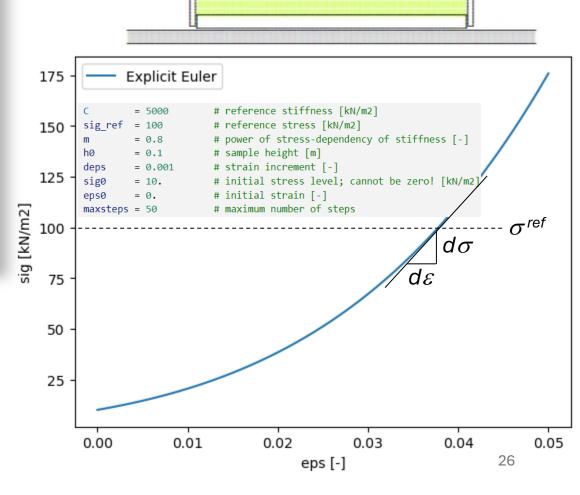
As ODE:

$$rac{d\sigma}{darepsilon} = C \left(rac{\sigma}{\sigma^{ref}}
ight)^m = C^*\sigma^m$$
 with $C^* = rac{C}{\left(\sigma^{ref}
ight)^m}$

Explicit Euler:

$$\frac{\sigma_{i+1} - \sigma_i}{\Delta \varepsilon} = C^* \sigma_i^m$$

$$\sigma_{i+1} = \sigma_i + \Delta \varepsilon C^* \sigma_i^m$$



 $d\sigma$

 $\sqrt{d\varepsilon}$

ODE:
$$\frac{d\sigma}{d\varepsilon} = C \left(\frac{\sigma}{\sigma^{ref}}\right)^m = C^* \sigma^m$$

Implicit Euler:
$$rac{\sigma_{i+1}-\sigma_{i}}{\Delta arepsilon}=C^{*}\left(\sigma_{i+1}
ight)^{m}$$

Possible solution: (solved iteratively)
$$\sigma_{i+1}^{j+1} = \sigma_i + \Delta \varepsilon C^* \left(\sigma_{i+1}^j\right)^m$$

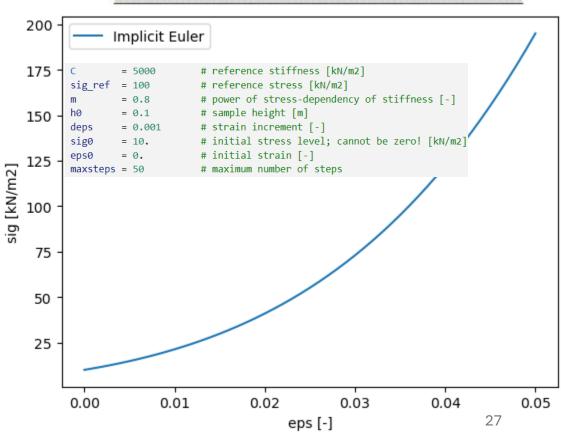
Not so good solution:

$$\sigma_{i+1} - \Delta arepsilon C^* \left(\sigma_{i+1}
ight)^m = \sigma_i$$

$$\sigma_{i+1}\left[1-\Delta\varepsilon C^*\left(\sigma_{i+1}\right)^{m-1}\right]=\sigma_i$$

$$\sigma_{i+1}^{j+1} = rac{\sigma_i}{\left[1 - \Delta arepsilon C^* \left(\sigma_{i+1}^j
ight)^{m-1}
ight]}$$





ODE:
$$\frac{d\sigma}{d\varepsilon} = C \left(\frac{\sigma}{\sigma^{ref}}\right)^m = C^*\sigma^m$$

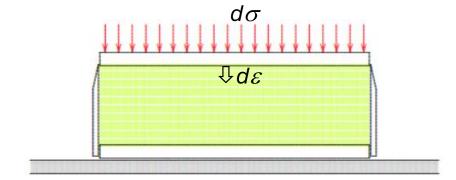
Best solution (least number of iterations): Implicit Euler with Newton-Raphson iterations:

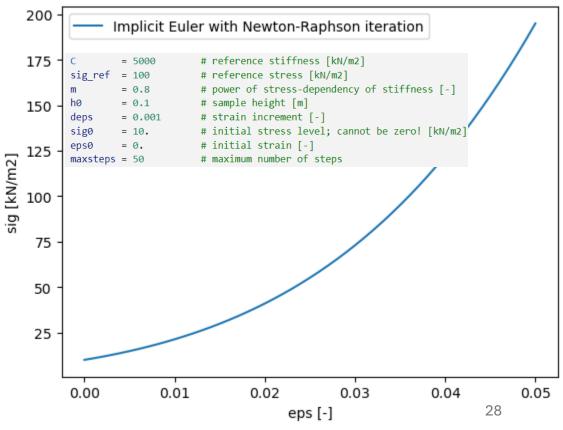
$$g(\sigma_{i+1}) = 0$$
 with $g(\sigma_{i+1}) = \sigma_{i+1} - \Delta \varepsilon C^* (\sigma_{i+1})^m - \sigma_i$

$$\sigma_{i+1}^{j+1} = \sigma_{i+1}^j - rac{g(\sigma_{i+1}^j)}{g'(\sigma_{i+1}^j)}$$

$$g(\sigma_{i+1}^{j}) = \sigma_{i+1}^{j} - \Delta arepsilon C^{*} \left(\sigma_{i+1}^{j}
ight)^{m} - \sigma_{i}$$

$$g'(\sigma_{i+1}^j) = \frac{dg}{d\sigma_{i+1}} = 1 - m\Delta\varepsilon C^* \left(\sigma_{i+1}^j\right)^{m-1}$$





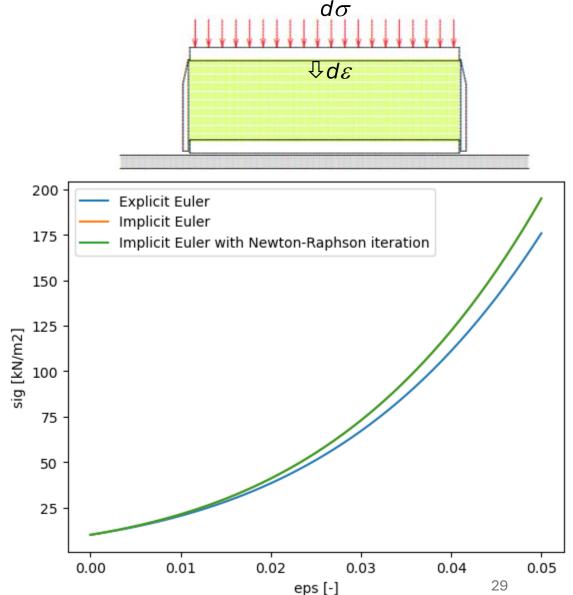
ODE:
$$\frac{d\sigma}{d\varepsilon} = C \left(\frac{\sigma}{\sigma^{ref}}\right)^m = C^* \sigma^m$$

Comparison of solutions:

```
C = 5000 # reference stiffness [kN/m2]
sig_ref = 100 # reference stress [kN/m2]
m = 0.8 # power of stress-dependency of stiffness [-]
h0 = 0.1 # sample height [m]
deps = 0.001 # strain increment [-]
sig0 = 10. # initial stress level; cannot be zero! [kN/m2]
eps0 = 0. # initial strain [-]
maxsteps = 50 # maximum number of steps
```

Final sample height:

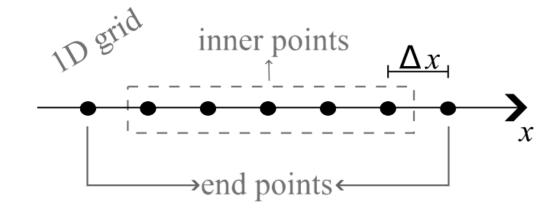
```
h_{end} = h0 (1-eps) = 0.095 m
```



Second order ODE

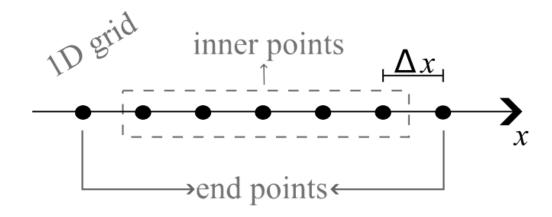
$$\frac{d^2y}{dt^2} = \frac{dy}{dt} - y + \cos t = 0 \quad \Rightarrow \mathsf{IVP}$$

$$rac{d^2T}{dx^2} - lpha_1(T-T_s) = 0$$
 $ightharpoonup$ BVP



Second order ODE: Boundary Conditions

$$\frac{d^2T}{dx^2} - \alpha_1(T - T_s) = 0$$



$$rac{d^2y}{dx^2}=g(x,y,rac{dy}{dx})$$

- Dirichlet

$$y(x = a) = Y_a$$
 and $y(x = b) = Y_b$

- Neumann

$$\left. \frac{dy}{dx} \right|_{x=a} = D_a \text{ and } \left. \frac{dy}{dx} \right|_{x=b} = D_b$$

- Mixed

Join the Vevox session

Go to vevox.app

Enter the session ID: 123-957-664

Or scan the QR code

Give an example of a Neumann boundary condition for a deformation or a flow problem

Give an example of a Neumann boundary condition for a deformation or a flow problem

RESULTS SLIDE

Exercise – Temperature distribution across a thin plate

Consider the following differential equation:

$$\frac{d^2T}{dx^2} = \alpha(T - T_S) \quad \text{or} \quad \frac{d^2T}{dx^2} - \alpha(T - T_S) = 0$$

in the domain $x \in (0, 0.1)$

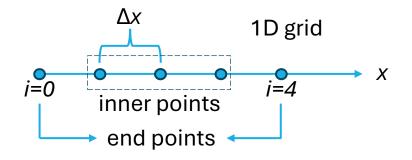
with the conditions: T(0) = 473[K], T(0.1) = 293[K]

What type of boundary conditions are these?

Central Difference scheme:

$$f''(x_0) \approx \frac{f(x_0 - \Delta x) - 2f(x_0) + f(x_0 + \Delta x)}{(\Delta x)^2}$$

or
$$f''(x_i) \approx \frac{f(x_{i-1}) - 2f(x_i) + f(x_{i+1})}{(\Delta x)^2}$$



Elaborate the general numerical equation in T_{i-1} , T_i , T_{i+1} according to the Central Difference scheme.

Elaborate the scheme further using 3 inner grid points and add the boundary conditions.

(i.e. consider i = 1, 2, 3 in the equation and apply the boundary conditions at the end points i = 0, 4)

Formulate the result as a matrix-vector system.

Exercise – Temperature distribution across a thin plate

$$\frac{T_{i-1} - 2T_i + T_{i+1}}{\Delta x^2} - \alpha (T_i - T_s) = 0 \qquad \Leftrightarrow \qquad T_{i-1} - 2T_i + T_{i+1} - \alpha \Delta x^2 (T_i - T_s) = 0$$

$$T_{i-1} - (2 + \alpha \Delta x^2)T_i + T_{i+1} = \alpha \Delta x^2 T_s$$

$$\begin{bmatrix}
T_{0} \\
T_{0} \\
-(2 + \alpha \Delta x^{2})T_{1} \\
T_{1} \\
-(2 + \alpha \Delta x^{2})T_{2} \\
T_{2} \\
-(2 + \alpha \Delta x^{2})T_{3} \\
T_{3} \\
T_{4} \\
T_{4} \\
T_{5} \\
T_{1} \\
T_{2} \\
T_{3} \\
T_{4} \\
T_{5} \\
T_{1} \\
T_{2} \\
T_{3} \\
T_{4} \\
T_{4} \\
T_{5} \\
T_{1} \\
T_{1} \\
T_{2} \\
T_{3} \\
T_{4} \\
T_{5} \\
T_{5} \\
T_{1} \\
T_{5} \\
T_{5} \\
T_{5} \\
T_{6} \\
T_{1} \\
T_{1} \\
T_{2} \\
T_{3} \\
T_{5} \\
T_{5} \\
T_{6} \\
T_{7} \\
T_{8} \\
T$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & -(2 + \alpha \Delta x^2) & 1 & 0 & 0 \\ 0 & 1 & -(2 + \alpha \Delta x^2) & 1 & 0 \\ 0 & 0 & 1 & -(2 + \alpha \Delta x^2) & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} T_0 \\ T_1 \\ T_2 \\ T_3 \\ T_4 \end{bmatrix} = \begin{bmatrix} T(0) \\ \alpha \Delta x^2 T_s \\ \alpha \Delta x^2 T_s \\ \alpha \Delta x^2 T_s \\ T(0.1) \end{bmatrix}$$

What do you notice? Why?

```
M = np.zeros([gridpoints, gridpoints])
RHS = np.zeros(gridpoints)

for i in range(1, gridpoints-1):
    M[i, i-1] = -1.
    M[i, i ] = (2 + alfa*dx*dx)
    M[i, i+1] = -1.
    RHS[i] = -alfa*dx*dx*Ts
M[0, 0] = 1.
M[gridpoints-1, gridpoints-1] = 1.
RHS[0] = 473.
RHS[gridpoints-1] = 293.

T = np.linalg.solve(M, RHS)
```

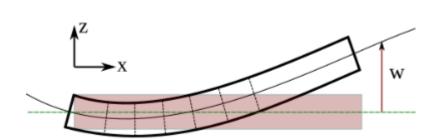
$$rac{d^2M}{dx^2} = -q$$
 and $M = -EIrac{d^2w}{dx^2}$

M = bending moment

w = beam deflection (lateral displacement)

EI = flexural rigidity (bending stiffness)

q = distributed load



Central difference scheme for both equations:

$$\frac{M_{i-1}-2M_i+Mi+1}{\Delta x^2}=-q_i \qquad \qquad \text{or} \qquad \qquad$$

$$-rac{M_{i}}{EI} = rac{w_{i-1} - 2w_{i} + w_{i+1}}{\Delta x^{2}}$$
 or

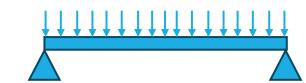
$$M_{i-1} - 2M_i + M_{i+1} = -\Delta x^2 q_i$$

$$w_{i-1} - 2w_i + w_{i+1} = -rac{\Delta x^2}{EI}M_i$$

Consider a simply supported beam at both ends with the following boundary conditions:

at
$$x = 0$$
: $w = 0$ and $M = 0$

at
$$x = L$$
: $w = 0$ and $M = 0$



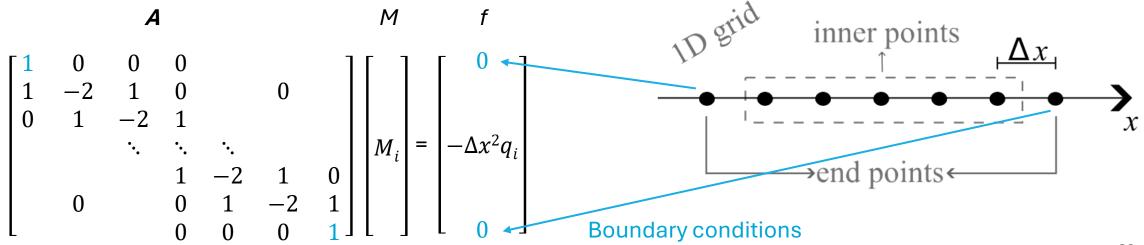
First, solve the bending moments:

$$M_{i-1} - 2M_i + M_{i+1} = -\Delta x^2 q_i$$

This gives a system of equations:

$$AM = f = > M = A^{-1} f$$

(in Python: M = numpy.linalg.solve(A, f)



Consider a simply supported beam at both ends with the following boundary conditions:

at
$$x = 0$$
: $w = 0$ and $M = 0$

at
$$x = L$$
: $w = 0$ and $M = 0$

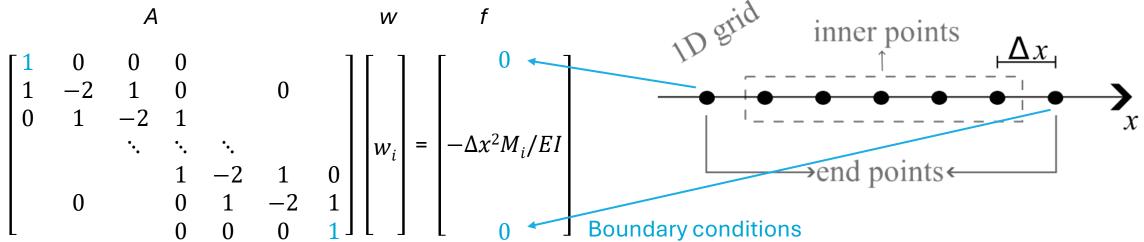
Then, solve the beam deflections:

$$w_{i-1} - 2w_i + w_{i+1} = -rac{\Delta x^2}{EI} M_i$$

This gives a system of equations:

$$A w = f = > w = A^{-1} f$$

(in Python: w = numpy.linalg.solve(A,f)



Alternatively, both differential equations can be solved simultaneously:

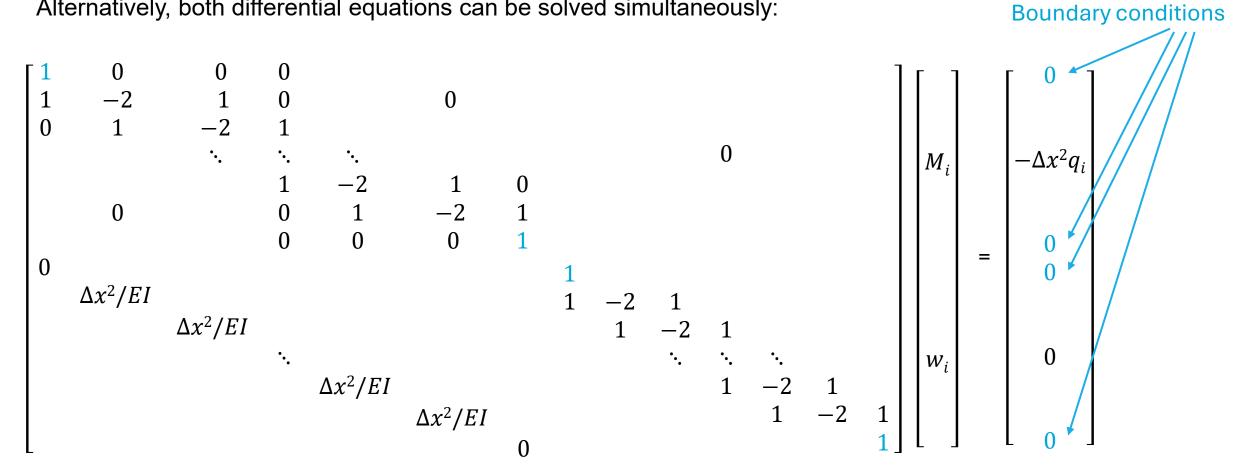
$$M_{i-1} - 2M_i + M_{i+1} = -\Delta x^2 q_i$$

$$w_{i-1}-2w_i+w_{i+1}=-rac{\Delta x^2}{EI}M_i$$

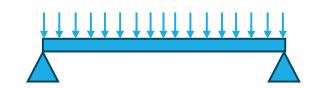
$$\frac{\Delta x^2}{EI} M_i + w_{i-1} - 2w_i + w_{i+1} = 0$$

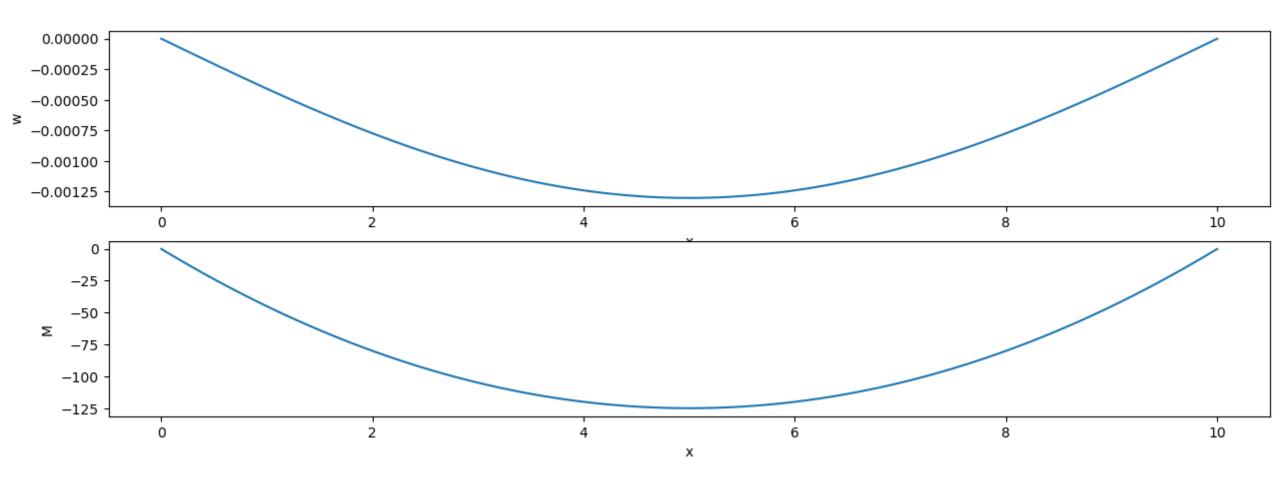
(RHS term is now integrated in the matrix)

Alternatively, both differential equations can be solved simultaneously:



Results for L=10m, EI=10⁶ kNm², q=-10 kN/m², Δ x=0.1



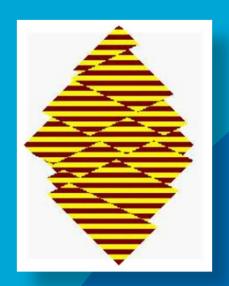


Summary

- Differential equations:
 - Initial Value Problems
 - Boundary Value Problems
- Numerical solutions:
 - Explicit Euler Stability criterion!
 - Implicit Euler
 - Example: Falling head test
- Non-linear ODE: Iterative solution (Newton-Raphson):
- Multiple-step and multi-stage schemes
 - Heun
 - Runge-Kutta
- Second order ODEs
 - Boundary Value Problems
 - Example: Bending beam

What you can expect further this week...

- Programming Assignment 1.3:
 - Coding collaboration using VS Live Share
 - Code completion using IntelliSense
 - Programming: Matrix and vector manipulations
- Wednesday 10:45-12:30: Workshop 1.3:
 - Solving initial value problem: Falling head test (hydraulic conductivity)
 - Solving boundary value problem: Bending beam
 - Solving two coupled ODEs in one system
- Friday 9:45-12:30: Group Assignment 1.3:
 - Solving non-linear ODE (initial value problem) using Newton-Raphson iterations:
 Hydrological discharge model



Join us for the information session on the **Geotechnical Engineering** track Tuesday 16 September 12:45-13:30 room D

25 sept Geodrinks XL (FREE pizza & drinks)

17:00 in exhibition room (glass part 1st floor)

Ronald Brinkgreve, Anna Störiko, Jaime Arriaga r.b.j.brinkgreve@tudelft.nl