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Learning objectives

At the end of this lecture, you should be able to

* Discuss the relevance of numerical modelling
keeping in mind its pitfalls

* Use Taylor series to find approximations of
derivatives and its accuracy

* Apply numerical integration methods to functions
using pen and paper.

]
TUDelft




Methods

(T 1T [ I Other methods:

[ =T [AR]

| o|lo s o} o

ol Bl 7, o2l Kl B §

‘oOoooo¥ ] = Basedon
\[\,{&o O/fi characteristics
(-.n‘?il.lite;gi-f»ere:(‘:;s (h) Finil.e Volumes ) (c) Finite Elements - Bou ndary

\_'_’ elements
- Physics-informed

MUDE MUDE

Q1 02 neural networks

Q3, Q4 and beyond (depending on your track)
(e.g. CIEM2110 Numerical Modelling in Geotechnical Engineering)



= 0/1 Join at: vevox.app ID: 123-957-664

What relationship do you expect to get with
numerical models?

Developer/ creator

] 0%
User (occasionally)
| | 0w
Super user (daily)
| 0%
Decision maker
, | 0%




m Join at: vevox.app ID: 123-957-664 Showing Results

What relationship do you expect to get with
numerical models?

Developer/ creator

] 0%
User (occasionally)
| | 0w
Super user (daily)
] 0%
Decision maker
’ | 0%




Some applications

Mountain building

e
e e
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Building Deformation Dam Break Simulation

Garrett Apuzen-Ito. (2016, Nov 16). Numerical model of mountain ONKAR CHAUHAN. (2018, Jan 7). 3D Animation of deformation of Building after analysis XC ENGINEERING. (2016, Mar 17). Damn break simulation

building [Video]. Youtube. https://www.youtube.com/watch?v=HUn8lzdDmfk  in ETABS [Video]. Youtube. https://www.youtube.com/watch?v=RJZRtdINSms with FLOW-3D [Video]. Youtube.
https://www.youtube.com/watch?v=3q8EY4zBf3w

Tire - hydroplaning Large eddy simulation of a Wind Farm
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Nextflow Software. (2019, Mar 14). Tyre Hydroplanning simulation Physics of Fluids Group University of Twente. (2016, October 27). Large eddy 6
[Video]. simulation of a Wind Farm- Explanatory clip [Video]. Youtube.
Youtubehttps://www.youtube.com/watch?v=0sVCOn_hoGU https://www.youtube.com/watch?v=gEtcCjin-0Q
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A short discussion about numerical models

“All models are wrong, but some are

7 B
Some Pros useful” (after George Box)

1. Design checks Complexity
2. Future scenarios

3. Non-existent situations ‘EF? @I
, 4
4. Some experiments cannot be scaled |

Some Cons

1. May give credibility to incorrect results Affordability EE Accuracy
2. Good modellers are scarce

3. Can take a lot of effort “When all you have is a hammer,

everything looks like a nail” (after
Abraham Kaplan)
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Root finding: Numerical solutions for f(x) =0 (which x?)

1. Stepping method f(x)
(fixed interval)

. . f(x)

2. Bisection method /
f(x)

3. Newton-Raphson /

1 X
(taking advantage of derivatives) —/
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Differential equations — ODEs, PDEs

lce growth
First order ODE =>»

Beam deformation
Second order ODE =

1D consolidation
Second order PDE =

Navier Stokes 3D
System on non-linear PDEs =

dh’iC(f Tlt'(ztcr = ﬂlil‘
k

Pice = —Rjce

dt

h 1cE

We often
approximate
the derivatives

numerically!

dhice
dt

A2
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Numerical Derivatives

- af
Definition = —
dx

L

Numerically &  f'(zg) ~

= f,(CE()) — lim

f(z) — f(zo)

T—+2p £Z — (L’O

f(z) — f(wo)

Azx

,where Ax = = — x
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More than one way to approximate derivative

St ﬂ < f(ivz'+1) - f(sz)
dr ; Lit1 — L4
T —— df - f(mz) - f(«’Bz'—l)
dx B L; — L;j—1
- X central —- df f($i+1) - f(il?z—l)
dﬂS‘ Li11 Li—1
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Taylor Series Expansions

* The exact value of any function f(x) around x = x, can be calculated using an infinite
number of terms.

FG) = FOxa) + ) =22 St

2 _ 3 B ,
11 + f”(xO) ' + fll/(xo) (.X' 3X0) 4+ .-+ f(n)(xo) (.X' xO)

! n!

The symbol ! means factorial (in Dutch: faculteit): 3!=1x2x3=6
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Taylor Series Expansions

* Compute the Taylor Series Expansion of f(x) = sin(x) around x, = 0 with third
order accuracy

— _ 3
FG) = o) + /i) T2 gy BT ) B0
£(0) = sin(0) . R0 =0
f'(0) = cos(0) — f'(0) =1

f'(0) = —sin(0) - £7(0) =0

f"""(0) = —cos(0) — f'(0) = —

0+ (-1 =x -
++()6 x6

— _ 3 3
5 Fe 0+ ) E b—0) *



Taylor Series Expansions

* Compute the Taylor Series Expansion of f(x) = sin(x) around x, = 0 with third

order accuracy

3
X
sin(x)~x — —
() ~x—~

Taylor Series Expansion of fix) = sin(x)

’ - = First Order

7= fix) =sin(x)

== Third Order
= = Fifth Order
-~ Seventh Order
@® Expansion Point (x = 0.000)

-1 0 1
X

17



0/1

Join at: vevox.app

ID: 123-957-664

Which approximation gives the best result at x=107

1 term

3 terms

5terms

7 terms

0%

0%

0%

0%

fix)

Taylor Senes Expansion of f{x) = sin(x)

,,,,, \
7/ \\N ’
-14 ’ ——— ’

/ Pal
4 7 = fix)=sin(x)
/ ’ - = First Order
s == Third Order
s == Fifth Order
o ~ = Seventh Order
s ® Expansion Point (x = 0.000)

-4 =3 =d -1 0 1



0/1 Join at: vevox.app ID: 123-957-664 Preparing Results
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The more terms used; the solution will be more accurate near x

The farther from xg; the error increases

Taylor Series Expansion of f(x) = sin(x)

30 3 ly
\ I
\
/
\
\
20 A \
\
\
\
\
\\
10 - \
\ e
N p— -
N -l o=
~ p———y
\\ R z’
é 0 jﬁ'ﬁ":"’-‘"-‘-‘;‘ﬂ:’ e -2l ﬂm e —
/, ————————— \\\
e N
______ / \\
/’ A
-10 A 7
F — fix)=sin(x)
/ - = First Order
20 4 / = = Third Order
/ = = Fifth Order
,’ Seventh Order \
I ® Expansion Point (x = 0.000) \\
I
-30 T T T T T T \I
-6 -4 -2 0 2 4 6
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Taylor Series Expansions to get the derivatives

* Basic derivatives
* Higher order Finite Difference

* Second derivative Finite Difference

21



Taylor expansion — 1 or 2 variables

* Taylor series for a function of one variable y=f(x):

f"(xo)
2!

f(xo)

n!

(x —x0)* + -+

f(x) = f(xo) + f'(x0) (x — x0) +

(x — xo)"

* Second degree Taylor Polynomial of a function of two variables, f(x,y)

fOoy) = fxo,y0) + [, (X0, y0) (x — xo) + f’y(xo»YO)(y —Yo) +

fx' (%0, Y0)
2

y”(xOr yO)

_ 2
(x XO) + 5

(Y = ¥0)? + fily (X0, ¥0) (x — %) (¥ = ¥o)
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Taylor expansion — Derivation of expression for first derivative

f(xo)

frl(xO) - (X _ Xo)n (TSE)

2!

f(x) = f(xg) + f'(xg)(x — xp) + (x—x0)2_|_..._|_

Based on TSE, consider a regular interval (x-x,) = Ax (hence, x = x,+Ax):
Derive an expression for the O(Ax)-accurate first derivative of function f(x) around x,

| f(x)
flxg+ Ax) = .7
Ax
| | :_‘_: | | |
Flto + B%) = fxg) + (o) Ax + 0(2x?) T e Xy
Xig Xi Xisq
Xjr1 Xj
f'(xy) = O + AX) — /(%) + 0(Ax) Forward Difference method
X

+ 0(Ax) Backward Difference method

iy < [0 = fixo@Ax)

A
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Taylor expansion — Derivation of expression for higher-order derivative

f(xo)

f"(xo) (x — xo)z 4ot — (x —x)™ (TSE)

2!

fQ) = flxg) + [ (xp)(x — xp) +

Derive an expression for the O(Ax?)-accurate first derivative of function f(x) around x,

! > 0) (Ax)? + 0(Ax3)

f(xo +Ax) = N + f'(x0)Ax +

Flxo =A%) = flxg) = f (o) x + %x)z +0(Ax%)

fxg 4+ Ax) — f(xg — Ax) = 2 f'(x9)Ax + 0(Ax>)

f(xo + Ax) — f(x — Ax)
2Ax

f'(x) = + 0(Ax?) Central Difference method
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Taylor expansion — Derivation of

[ (x0)
2!

fQ) = flxg) + [ (xp)(x — xp) + (x

Derive an expression for the second deri\

£y + Bx) = Fxo) + f'(xo)Ax +

f(xo) = f(xo)
£y =A%) = F(x0) — £ (xo)Ax +

flxo +Ax) — 2f(x9) + f(xg — Ax) =

First define a TSE for a point two steps away from x;:

(2Az)*
2!

f(zi+2Az) = f(zi) + 2Az f'(z:) + f"(zi) + O(Az).

Now multiply the TSE by two for a point one step away from z;:

2Az2
2!

2f(z; + Az) = 2f(x;) + 28z () + f'(=z:) + O(A®).

By subtracting the first expression from the second one the first derivative disappears:

2Az2
2!

F(@i+ 2A2) — 2f(x; + Az) = —f(@:) + —o f"(z:) + O(AD).

By solving for f” we obtain the forward expression:

f(zi+2Az) — 2f(z; + Az) + f(z;)
Az?

(@) = +0(Az).

f(xo +Ax) — 2f(xq) + f(xo — Ax)

f"(x0) = (Ax)?

+ O0(Ax)

25




Taylor Series Expansions to get the derivatives

* Different numerical approximations of the derivative can be found
using TSE

* Using TSE, we also find the error order.
FD/BD are first-order accurate, CD second-order accurate.

* You can find more accurate approximations by using more points

* The approximation of the second derivative requires at least one
more point of information

26



Numerical Integration



Numerical Integration

Numerical integration : a technique used to approximate the value of a defined integral,

when it is not possible to obtain the exact value. b
I:/ f(z)dz

Numerical integration rules :

e [eft Riemann

Right Riemann
* Midpointrule

* Trapezoidalrule



fix)

Numerical Integration Methods: I =

Left Riemann

Right Riemann

n-1
PILCTE:
i=0

Midpoint

Trapezoidal

n-—1

=0

flx) + f (Xi41)

29




Numerical Integration Methods: | =

Simpson’s rule:

Yi

\f(x)

IJL(X)

P2(X)

P —

n/2
_ f(x2i—2) +4f(z2-1) + f(x2)
~~ ;:1 ; 2Ax

Works only for equally spaced intervals

30



Numerical Integration Rules
b n—1
Left Riemann Error = | / f(z)dz — Z f(z:) Azl Elaboration using TSE gives:
a i—(0)
Left Riemann Error = lf'(b — a)Aa:/2‘ therefore O(Ax)
Right Riemann Error = ‘f’(b — a)Ax/2| therefore O(Ax)
Midpoint Error = ’f"(b — a)A:c2/2| therefore O(Az?)
Trapezoidal Error = lf"(b — a)A:c2/2l therefore O(Az?)

Simpsons Error = ’f""(b — a)Aar:4/2| therefore O(Az*)

31



Example: Integration of PDF to obtain CDF

Consider the Standard Gumbel Probability Density Function (PDF) for a stochastic variable: f(z) = e~ ")

Calculate the Cumulative Distribution (CDF) for x =0, 2 and 4 by numerical integration

PDF CDF
Theoretical solution for CDF: sl 1 e ’ ’ =
X 0.30 /A\ o~ /.,_— :
F(x) = ff(x) dx =e € w3 ] \ il / |

So, for target points: 0101 / \
F(0)=0.36787944 ..., / K
F(2) =0.87342302 : |

0.00 001

X=

Il
AN O

X .
1
X .

F(4) =0.98185107 &/ - : : ; . " : : -
Numerical solutions for Left and Right Riemann, Midpoint and Trapezoidal rule (next slides):
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Example: Integration of PDF to obtain CDF

Left Riemann

250 4
200 1

F(x) = jf(x) dx

150 4

Left Riemann:

fix)

100+

nif(xi)Ax ]
i=0

nsteps = 160
Y1l = np.zeros(nsteps+1)

dx = 18. [/ nsteps
x1 = np.linspace(-4, 6, num=nsteps+1)
for i in range(nsteps):

Y1[i41] = Y1[1] + f(x1[i]) * dx

Target points (x=0, 2, 4):

Left Riemann rule: [0.34948542 ©.8674276 ©.9809372 ]

Analytical solution: [©.36787944 9.118208495 ©.081798323] 3



Example: Integration of PDF to obtain CDF

Right Riemann

250 1
200

F(x) = ff(x) dx

150

Right Riemann:

fix)

1001

n—1 -
PILCTNE:
i=0

or ) flx)hx
i=1

Y1l = np.zeros(nsteps+1)

for 1 in range(nsteps):
Y1[i+1] = Y1[i] + f(xa[i+1]) * dx

Target points (x=0, 2, 4):

Right Riemann rule: [0.38627336 ©.8792481 ©.98273553]
Analytical solution: [©.36787944 0.118208495 ©.081798323 ]



Example: Integration of PDF to obtain CDF

Midpoint

250 -
200

F(x) = jf(x) dx

150

Midpoint rule:

fix)

1001

Xi + X; 50
f( i z+1) X

i=0 0 2

|_\

n—

Y1l = np.zeros(nsteps+1)

for 1 in range(nsteps):
Y1[i+1] = Y1[1i] + F((x2[1] + x1[i+1])/2) * dx

Target points (x=0, 2, 4):

Midpoint rule: [0.36787949 ©.8734656 ©.98185843]
Analytical solution: [©.36787944 ©.11820495 ©.01798323]



Example: Integration of PDF to obtain CDF

1.01 [P
x "
Trapezoidal

F(x) = Jf(x) dx ‘ 5
Trapezoidal rule: ‘_

n—1

$HC0+ i), w

X
2 ( 01 :
i=0 0 2 a 6 8

0.2 1 /

Y1l = np.zeros(nsteps+1)
0.0 A —

1 !

sl =2 for 1 in range(nsteps):
Y1[i+1] = Y1[i] + (F(x1[i]) + f(x1[i+1]))/2 * dx

In this way, we cammtegrate up to any mernmeanale Xx-vatue 1
a range to reproduce the entire CDF by numerical integration

Target points (x=0, 2, 4):

Trapezoidal rule: [0.36787939 ©.87333785 0©.98183636]
Analytical solution: [©.36787944 ©.11820495 ©.01798323]



lce growth Dice = — ki
First order ODE =

Beam deformation d’v -l [_qf +qL:—q—E]
Second order ODE = dz* EI\ 2

1D consolidation ap . @

Second order PDE = at ¥ 0z2

In Q1, we will NOT further consider PDEs !

38



0/1 Join at: vevox.app ID: 123-957-664

How many constraints do the following equations need?

1and 1
) 0%
1and 2 /) dhivc A Tu_.'atc'r o Tair
] 0% 1€ —— = "i(‘(‘
2 and 1 dt h; .
) 0%
1and 3
S and
3and 1
) 0% 2 5 . 2
2 and 2 dvz._l _q;+qL,__CZ£_
] 0% . -
2and 3 d" El 2 2
) 0%
3and 2

) 0%




0/1 Join at: vevox.app ID: 123-957-664 Preparing Results
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C ow and
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. % 4 EI 2 2
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Initial Value Problem

>

How many solutions do exist for this initial value problem?

41
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0

] 0%

1
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2
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3
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Initial Value Problem

1.00

0.75 A
0.50 -

dy

0.00 q

QL
o~
I
<
+
Q)
&
y [m]

>

—0.25 A
—0.50 A

—0.75 -

-1.00 T
0.0 0.5

l.'O 1.'5 2.'0
time [s]

Any ODE that has a time dependency, no matter the order,

has a solution completely dependent on the initial value!

2.5 3.0 3.5 4.0



Numerical solutions are used in all kinds of situations
- Root finding (f(x) = 0)
- Solving differential equations
- Numerical integration
Taylor Series Expansion
- Derivatives (FD, BD, CD)
- The relevance of taking higher-order terms into account
- Accuracy order

Numerical integration:
- Left Riemann
- Right Riemann
- Midpoint
- Trapezoidal rule
- Simpson’s rule
Differential equations (to be continued next week):
- Initial value problems
- Boundary value problems
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What you can expect further this week...

* Programming Assignment 1.2:
- Working with GitHub
- Creating reports with MarkDown

- Programming: Fundamentals, visualizing a matrix, creating subplots, list comprehension, filling
a matrix

* Wednesday 10:45-12:30: Workshop 1.2:

- Integrating a Probability Density Function (PDF) into a Cumulative Distribution Function (CDF)
- Integrating and differentiating an earthquake signal

* Friday 9:45-12:30: Group Assignment 1.2:

- Integrating salt concentration in a river
- TS approximation of a function
- TSE approach to function derivatives and accuracy
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