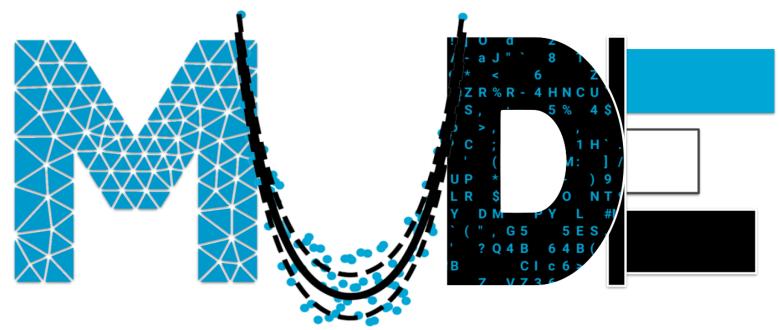
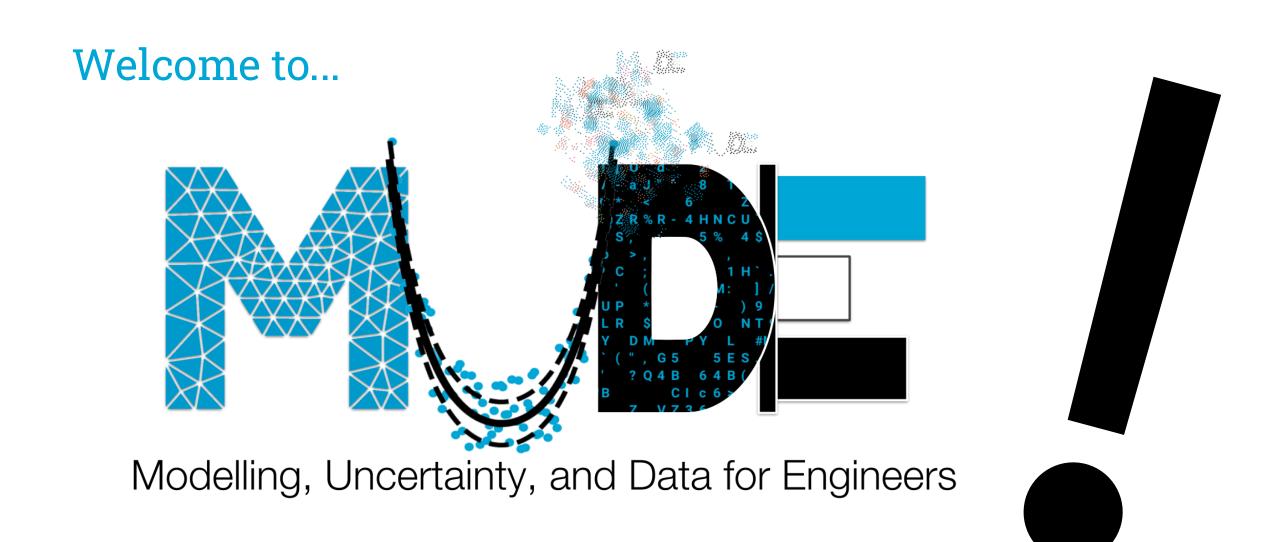


Use your phone to scan the QR and answer this survey!

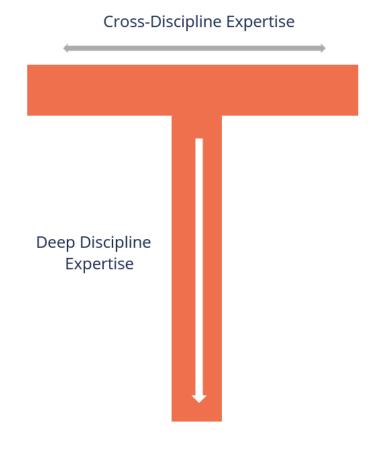

OR

Type the URL into your browser:



Welcome to...

Modelling, Uncertainty, and Data for Engineers


Nice to meet you!

Go to: vevox.app

Session ID: 147-912-491

Modelling, Uncertainty and Data for Engineers (MUDE)

- Landing zone
- Engineering fundamentals related to M, U, D
- Improve coding literacy
- 12 EC, Q1 + Q2, all programmes[>300 students!]

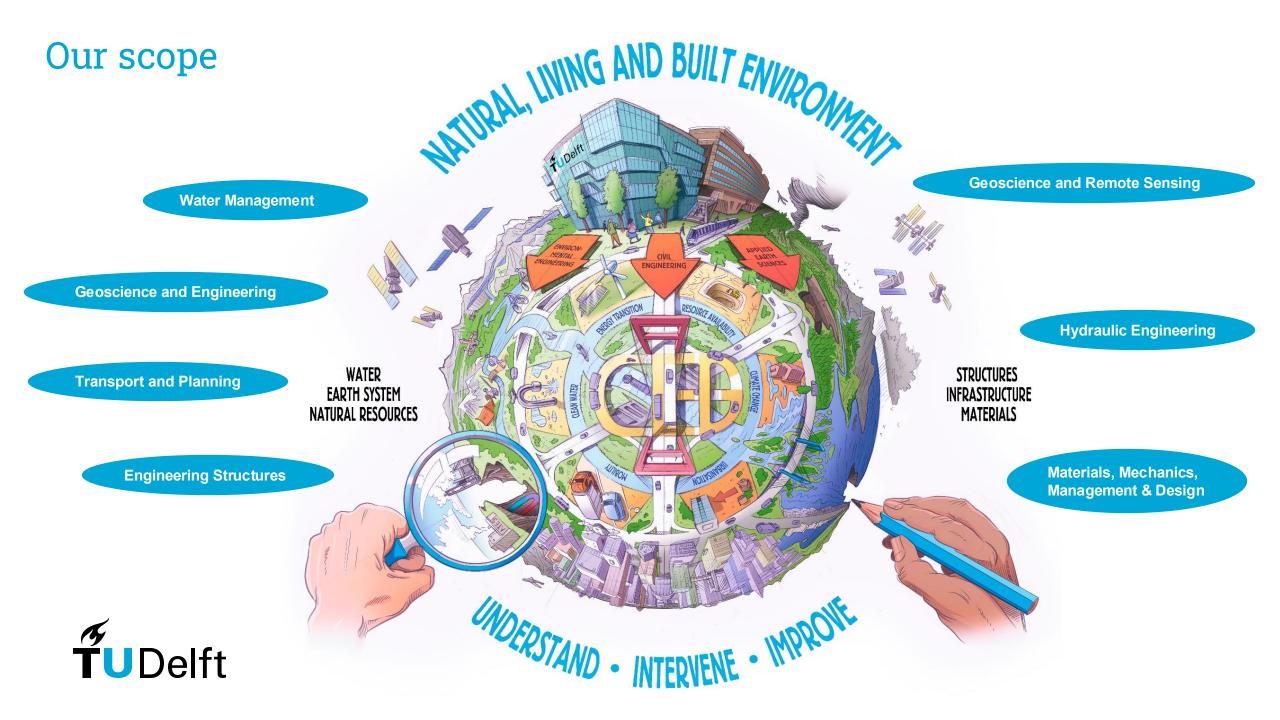
T-Shaped Skills

Welcome MSc students 2025-2026

Prof.dr.ir. Stefan Aarninkhof Dean of Faculty of Civil Engineering and Geosciences (CEG)

Sept. 2, 2025

Professional timeline


Year	Affiliation
1990-1996	Civil Engineering, TU Delft
1995	Ecole des Ponts et Chaussées, Paris
1996-2003	PhD @ TU Delft
1996-2006	Delft Hydraulics (nowadays Deltares)
2006-2016	Boskalis
2016-present	Professor of Coastal Engineering, TU Delft
2020-2024	Chair of Hydraulic Engineering Department
2022-2024	Director of EcoShape Building with Nature
2024-present	Dean, Faculty of Civil Engineering and Geosciences

Drivers for CEG

- Climate change
- Energy Transition
- Urbanisation & Mobility
- Clean water
- Resource availability
- Biodiversity
- Infrastructure replacement & restoration

Importance of fundamental knowledge

Complex, density-driven currents cause difficulties with placement Maasdeltatunnel (Rotterdam)

Herstel mislukte afzinkoperatie
Maasdeltatunnel 'gaat maanden
duren'
Gepubliceerd op 13-06-2023 om 17:05

De voorbereiding van het afzinken van het eerste tunneldeel in maart. © ANP / Hollandse Hoogte / MediaT\

Het beschadigde deel van de Maasdeltatunnel gaat eind juni naar een reparatiedok in de Botlek in Rotterdam. Dat maakt Rijkswaterstaat in een online update bekend. De beheerder verwacht dat het tunneldeel na aankomst "ongeveer drie maanden" op het dok ligt.

Het tunneldeel botste in april tegen een kade tijdens <u>een mislukte afzinkoperatie</u> op het Scheur tussen Rozenburg en Maassluis. Daar moet de tunnel uiteindelijk onder water komen te liggen.

CEG in a changing world

- Focus on UN Sustainable Development Goals (SDGs)
- Increased stakeholder engagement
- New technologies
- Moral dilemma: balancing different interests
- Engineering vs societal reality
- Inherent uncertainties
- Leave room for the unknown

Importance of MUDE

- Generic basis in modelling, uncertainty and data analysis
 - Relevant for all three programs: CE, AES and EE
 - Specialization at later moment
- Educate for entire career, not for first job

Take home message

- Be prepared to enter a challenging field
 - High-profile projects, major impact to society
 - Strong knowledge basis, work in multi-disciplinary teams
- Benefit from interaction
- Take time to explore what is driving you

What is MUDE?

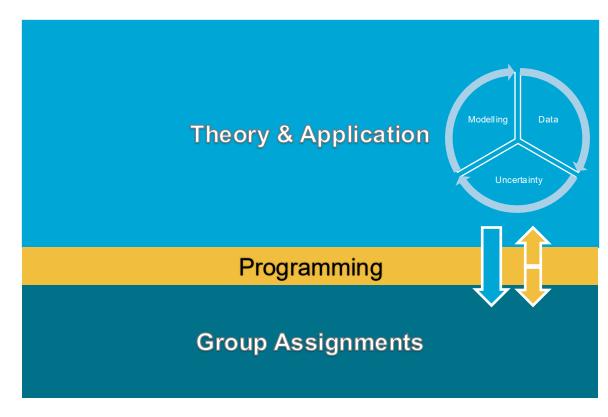
- What do current professionals need?
 - Programming literacy
 - Modelling concepts
 - Data structures and analysis
 - Uncertainty/risk comprehension
- Multidisciplinary group work helps to facilitate this

What is MUDE?

- NOT about applications from your specialization
 - Get grounded in fundamentals applicable across the fields
- NOT a math course as you know them from your BSc
 - Taught by CEG staff, connected to CEG applications
- NOT crash course in Python
 - Some prior experience is expected, means to catch up are there
- NOT going to make you a "pro" coder
 - Get comfortable with coding, see a host of cool implementations

MUDE: in a nutshell

Theory & Applications (~60%)


- Website and online book
- Applications drawn from all programmes

Group Assignments (~30%)

- Apply theory and programming to real problems
- Submit a weekly Report
- Collaborative and multidisciplinary

Programming (~10%)

- Coding and software engineering skills
- Effective documentation and communication
- Weekly Programming Assignments

Who are your MUDE teachers?

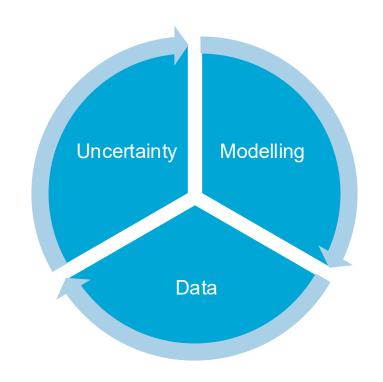
- Over 50 people involved!
 - Many familiar faces → you will meet them in class
- Your MUDE Guides

Frans

TUDelft

Tom

• J-ee-ah (<u>J</u>ug, S<u>ee, A</u>rt)



Jialei

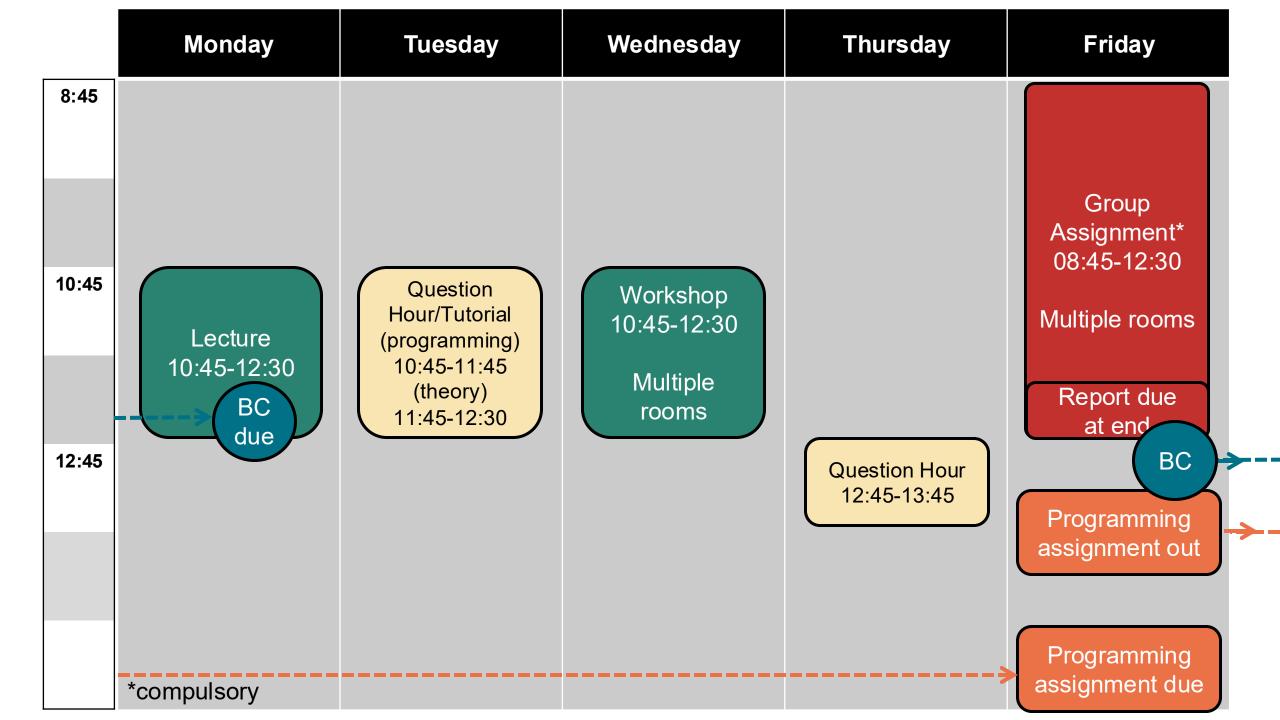
- → The best people to ask about logistics, personal issues, etc (MUDE-CEG@tudelft.nl)
- → At least one of us will always be present in every class session

Theory & Application Weekly Content

Numerical modelling				
Observation Theory				
e				
e				
e				
е				
e				
e				
e				

	Monday	Tuesday	Wednesday	Thursday	Friday
8:45 10:45 12:45	Lecture 10:45-12:30		Workshop 10:45-12:30 Multiple rooms		Group Assignment* 08:45-12:30 Multiple rooms
					*compulsory

	Monday	Tuesday	Wednesday	Thursday	Friday
8:45 10:45	Lecture 10:45-12:30		Workshop 10:45-12:30 Multiple rooms		Group Assignment* 08:45-12:30 Multiple rooms Report due at end
					*compulsory


	Monday	Tuesday	Wednesday	Thursday	Friday
8:45 10:45	Lecture 10:45-12:30	Question Hour/Tutorial (programming) 10:45-11:45 (theory) 11:45-12:30	Workshop 10:45-12:30 Multiple rooms	Question Hour 12:45-13:45	Group Assignment* 08:45-12:30 Multiple rooms Report due at end *compulsory

	Monday	Tuesday	Wednesday	Thursday	Friday
8:45 10:45 12:45	Lecture 10:45-12:30	Question Hour/Tutorial (programming) 10:45-11:45 (theory) 11:45-12:30	Workshop 10:45-12:30 Multiple rooms	Question Hour 12:45-13:45	Group Assignment* 08:45-12:30 Multiple rooms Report due at end Programming assignment out
	*compulsory				Programming assignment due

Buddycheck

- You are in the same group for a quarter
- Weekly survey on how groupwork is going
- Buddycheck will <u>not</u> be seen by your groupmates
- Important to inform us as early as possible so we can help if there are any concerns or issues
- Opens on Friday, due on Monday
- PART OF YOUR PORTFOLIO

Programming Learning Line

- Provides essential programming skills, based in Python
- Content based on inputs from industry (e.g., Deltares, HKV, RHDHV, RWS, ...)
- Some examples of what you will learn:
 - Coding standards and good practices
 - Effective documentation, communication, visualization
 - Debugging, Version control
 - And more!


```
modifier_ob.
  mirror object to mirror
mirror_mod.mirror_object
 peration == "MIRROR_X":
irror_mod.use_x = True
"Irror_mod.use_y = False
lrror_mod.use_z = False
 operation == "MIRROR_Y"
lrror_mod.use_x = False
Mrror_mod.use_y = True
 lrror_mod.use_z = False
 operation == "MIRROR_Z"
 _rror_mod.use_x = False
 lrror_mod.use_y = False
 rror_mod.use_z = True
 melection at the end -add
   ob.select= 1
   er ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modified
   irror ob.select = 0
  bpy.context.selected_obj
  lata.objects[one.name].sel
 int("please select exaction
  OPERATOR CLASSES ----
    pes.Operator):
     ( mirror to the selected
   ject.mirror_mirror_x"
 ext.active_object is not
                                   26
```

Programming Learning Line

Weekly programming assignments:

- New programming topics
- Preparations for workshop and group assignment
- Fundamental programming concepts

Struggling with fundamental programming concepts → self-study required! Join programming tutorials on Tuesday in Q1 week 2 – 5

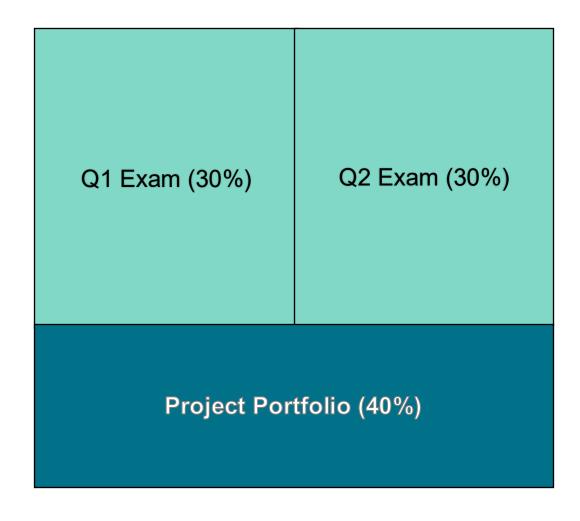

```
modifier_ob.
  mirror object to mirror
mirror_mod.mirror_object
 peration == "MIRROR_X":
__mod.use_x = True
"Irror_mod.use_y = False
Lrror_mod.use_z = False
 _operation == "MIRROR Y"
lrror_mod.use_x = False
lrror_mod.use_y = True
 lrror_mod.use_z = False
 operation == "MIRROR_Z";
  rror_mod.use_x = False
 lrror_mod.use_y = False
 rror_mod.use_z = True
  selection at the end -add
   ob.select= 1
   er ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modified
   rror ob.select = 0
  bpy.context.selected_obj
  lata.objects[one.name].sel
  int("please select exaction
  --- OPERATOR CLASSES ----
     pes.Operator):
      mirror to the selected
   ject.mirror_mirror_x"
 ext.active_object is not
                                   27
```

Practicalities: Personal Computer

- You should have one! (Mac, Windows, Linux are all OK)
- Bring it with you
- Keep it closed during Monday lectures
- Wednesday workshops may include Jupyter exercises
- Friday will definitely require a computer
- Is this an issue? Contact <u>MUDE-CEG@tudelft.nl</u> <u>immediately</u>.

Practicalities: Assessment

• 60%: 2 written exams (Q1 + Q2)

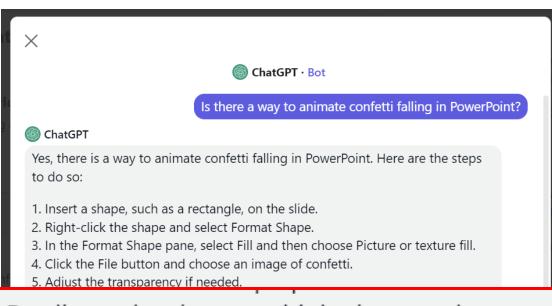

40%: Project Portfolio

• 70%: Group Work (weekly)

• 15%: Programming Assignments (weekly)

• 15%: Buddycheck (weekly)

See MyTimetable for up-to-date exam info


Special Requests

- Does anyone want to work in a group in a separate room?
- i.e., Quiet place
- Email <u>MUDE-CEG@tudelft.nl</u>
- We will prioritise students with special sensory or learning needs!

September, 2023

Using ChatGPT in MUDE?

- Is it feasible?
 - Yeah
- Is it practical?
 - No way!

7. Duplicate the shape multiple times and arrange them around the slide.

9. Go to the Animations tab and choose an animation effect, such as Fly In.

10. Adjust the animation settings as desired, such as duration and direction.

I hope this helps! Let me know if you have any other questions.

Is it getting better?

is there a way to animate confetti falling in powerpoint? Step 2: Animate the Confetti Falling 4. Timing the Animation: With the shapes still selected Yes, you can co Select Shapes: combination c Click and drag to se this pane from the "Animati Step 4: Option 2. Apply Motion Path Anii Step 1: Crea 1. Insert Sha If you want i Adjust Go to the "Animatic Go to falls. A In the Click on "Add Anim Choo Set the animate the shapes Under confe on whe repea Draw 3. Adjust the Path: Adding Var 2. Duplicate If necessary, adjust This method For a n Copy from the top of the directly in Po confe rotatio 4. Timing the Animation: Sprea 11 0 3 Select motic With the shapes stil Option this pane from the Step 2: Anii Step 3: Preview and Fi Adjust the duration 1. Select Sha iou the slide to see

A duration of a

- More detailed?
 - Yeah
- Is it feasible still?
 - Yeah
- Is it practical now?
 - Definitely not!!!

Yes, you can animate falling confetti in PowerPoint using built-in animation tools. While PowerPoint doesn't have a default "confetti" animation, you can create the effect manually or use pre-made elements. Here are a few ways to do it:

Option 1: Use Pre-Made Confetti GIF or Video

Easiest method

- Find a confetti animation (GIF or video with transparent background):
 - Search for "confetti transparent GIF" or "confetti green screen video."
 - Ensure it's a looping animation if needed.
- 2. Insert into PowerPoint:
 - Go to Insert > Pictures (for GIFs) or Insert > Video.
 - Resize and position it at the top of the slide.
- Set to autoplay:
 - Select the video/GIF.
 - Go to Animations > Animation Pane > Start With Previous.
- (Optional) Remove green background using the Remove Background tool or video editing beforehand.

 This year, it finally tells us to get an external image!

Option 2: Create Confetti Effect with Shapes and Animation

More customizable but time-consuming

1. Draw confetti pieces:

- Insert small shapes (circles, stars, rectangles) in different colors.
- Use Insert > Shapes.

2. Animate them:

- Select each shape.
- Go to Animations > Add Animation > Motion Paths > Down.
- Adjust the duration to make the fall slower (e.g., 2–5 seconds).
- Use Timing > Start: With Previous or After Previous.
- Add Spin or Grow/Shrink animations for more realism.

3. Duplicate and randomize:

- Copy multiple shapes.
- Vary the motion path direction, duration, and start time slightly to make it look natural.

September, 2025

 But it's still suggesting the old way in option 2!

- You can use ChatGPT, but
 - Be careful with the results
 - Get assisted, not replaced
 - Let us know when you use it

Option 3: Use PowerPoint Add-ins or Templates

There are some animated PowerPoint templates or add-ins (like **PresenterMedia** or **Envato Elements**) that offer pre-animated confetti effects.

Practicalities

All material is accessible through the website:

mude.citg.tudelft.nl

Brightspace: Course information, announcements and updates. Join CEGM1000-25!

Online textbook: <u>mude.citg.tudelft.nl/book</u>

Questions and answers: answers.citg.tudelft.nl

MUDE email: <u>MUDE-CEG@tudelft.nl</u> (personal issues only)

10 min break...

If you haven't already, use your phone to scan the QR and answer this survey!

OR

Type the URL into your browser.

https://forms.office.com/e/itvaQC3jaR

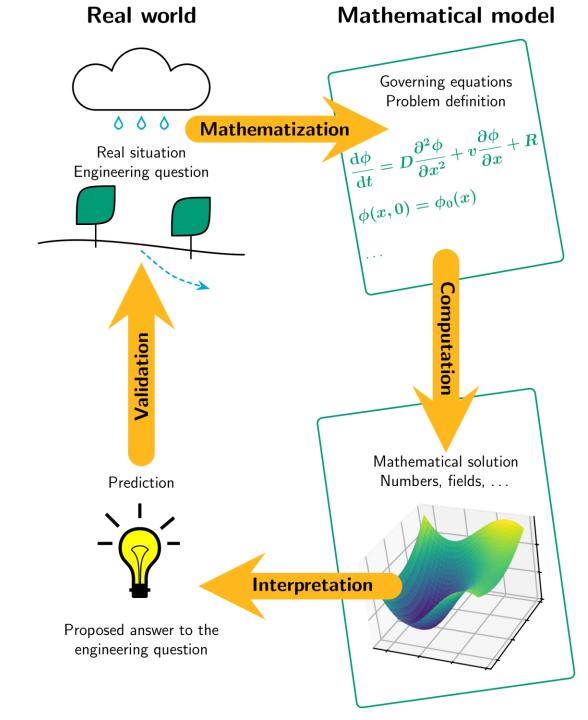
Introduction to modelling


- What's a model?
- In short: a model is a purpose-built abstraction of physical reality
- Let's see it in more detail.

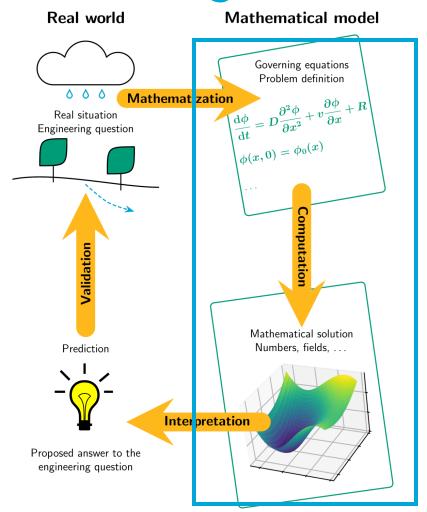
What is a model?

A model is a purpose-built abstraction of physical reality

- We interact with complex systems in reality
- How will the river respond to the discharge?
 - Temperature? → Heat transfer
 - Erosion in the margin? → Hydrodynamics and sediment transport
 - Contaminants? → Water quality
- Then we make an abstraction to analyze the aspects we are interested in



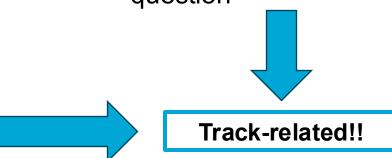
The modeling workflow


- Mathematization: from real world to equations
- Computation: finding the solution to the equations
- Interpretation: connecting back to real world
- Validation: comparing model results to real observations

Additional (iterative) steps:

- Verification: check computation results
- Calibration: tweak model parameters

Modelling in MUDE


Modelling, Uncertainty, and Data for Engineers

What is a model?

Real world Mathematical model Governing equations Problem definition 0 0 0 **Mathematization** Real situation Engineering question Mathematical solution Numbers, fields, ... Prediction Interp etation Proposed answer to the engineering question

A model is a purpose-built abstraction of physical reality

- Once we have the model:
 - Computations: use it!
 - Interpret the results to get the answer to your question

A note on Digital Twins

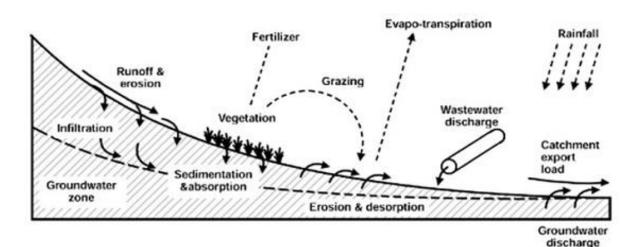
Physical Counterpart

- Real-life system
- Often has sensors to capture current state

Digital Counterpart

- Reflects state of physical counterpart
- Updates based on incoming data

- Conceptual models
- Mechanistic models
- Phenomenological models
- Data-driven models


- Conceptual models
- Mechanistic models
- Phenomenological models
- Data-driven models

Concept:

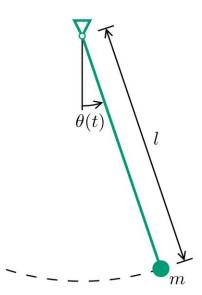
Simplified representation of a system or phenomenon Uses simplified concepts and relationships to understand a process

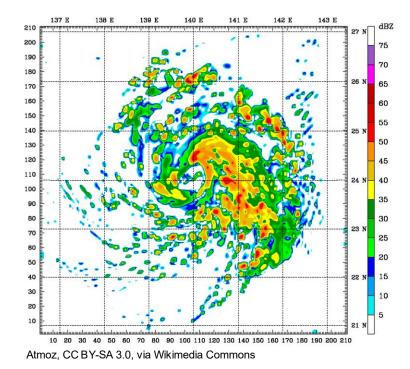
Examples:

Water cycle Nodes and links to represent road networks

- Conceptual models
- Mechanistic models
- Phenomenological models
- Data-driven models

Concept:


Physical, chemical, or biological laws to describe the behavior of constituting parts of the modeled system


Embodies the idea that a complex system is the summation of many basic phenomena

Examples:

Newton's laws for describing dynamic motion

Weather models

- Conceptual models
- Mechanistic models
- Phenomenological models
- Data-driven models

Concept:

Mathematical consistency between quantities, relationship between quantities is hypothesized

Model is constructed by setting up appropriate experiments, measuring observations, fitting hypothetical structure with data.

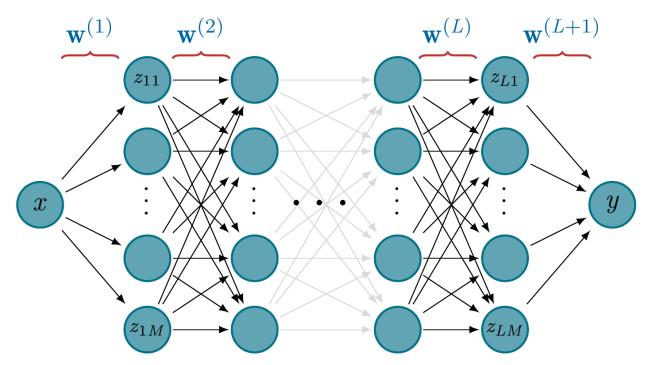
Examples:

Behavioral modelling (e.g. route choice in transport)
Friction modelling

- Conceptual models
- Mechanistic models
- Phenomenological models
- Data-driven models

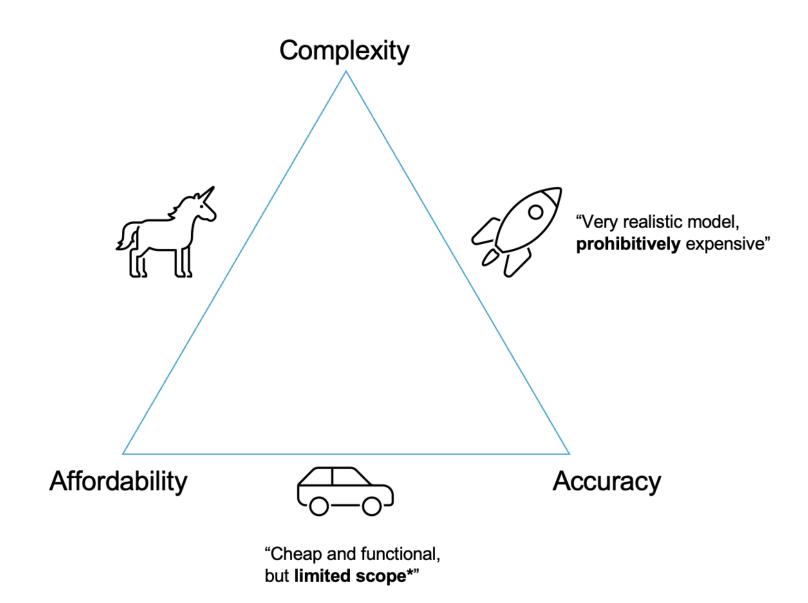
ر **TU**Delft

Concept:


Use of data to create empirical and probabilistic relations between the desired output and input

Examples:

Large language models


Weather models (increasingly)

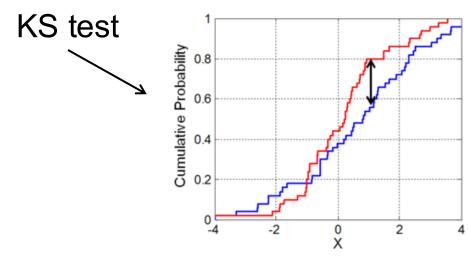
Models can also be a combination of different types of model!

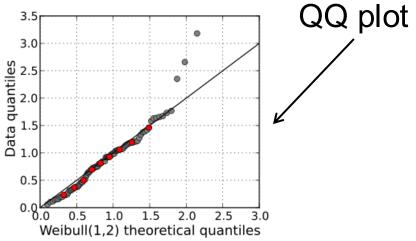
Trade-offs

- How detailed does the model need to be?
- How well does it need to reflect reality?
- What is our budget?

Let's assess some models

Go to: vevox.app

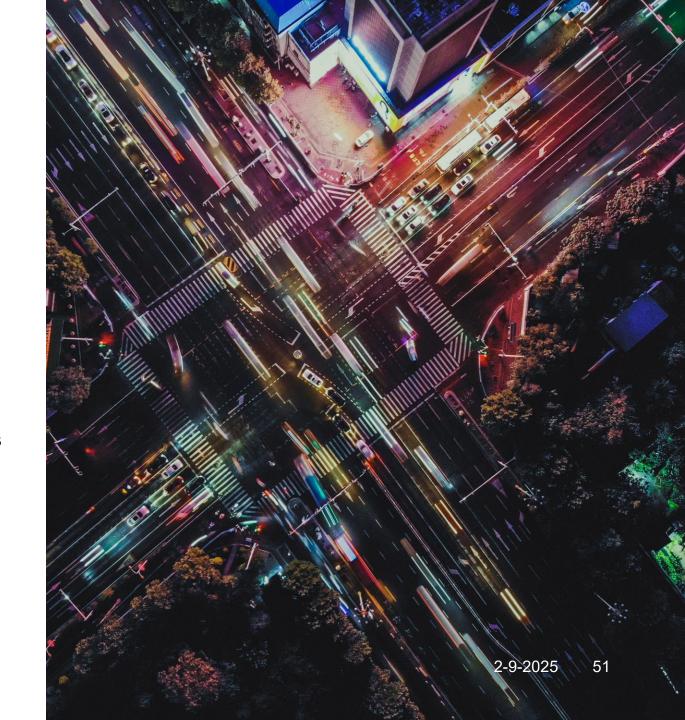

Session ID: 147-912-491



Goodness of Fit

- Methods that gives insight into the performance of models
- For example:
 - Square differences
 - Pearsons chi-square test
 - Bias
 - And many more!
- More on this throughout MUDE!

Examples only:


$$RMSE = \sqrt{rac{\sum_{i=1}^{N}(y_i - \hat{y}_i)^2}{N}} = \sqrt{MSE}$$

Uncertainty Classification

- Aleatoric 'coin flip'
 - Inherent uncertainty in a system
- Epistemic lack of knowledge
 - Limits to what we know and can measure
- Error deficiency in modelling and simulation
 - Limitation of modelling or data collection methods

What type of uncertainty is present?

Go to: vevox.app

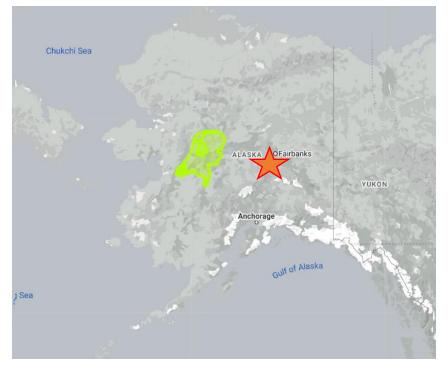
Session ID: 147-912-491

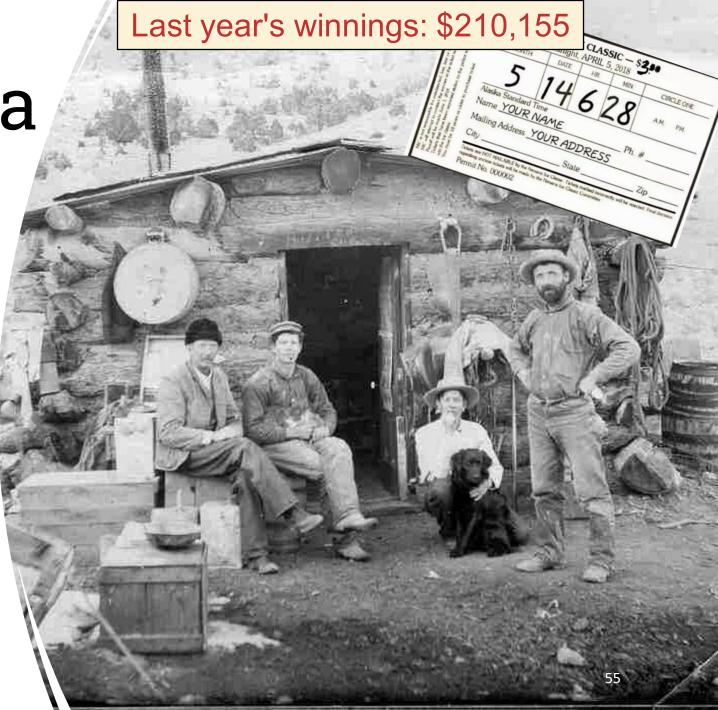
Main takeaways

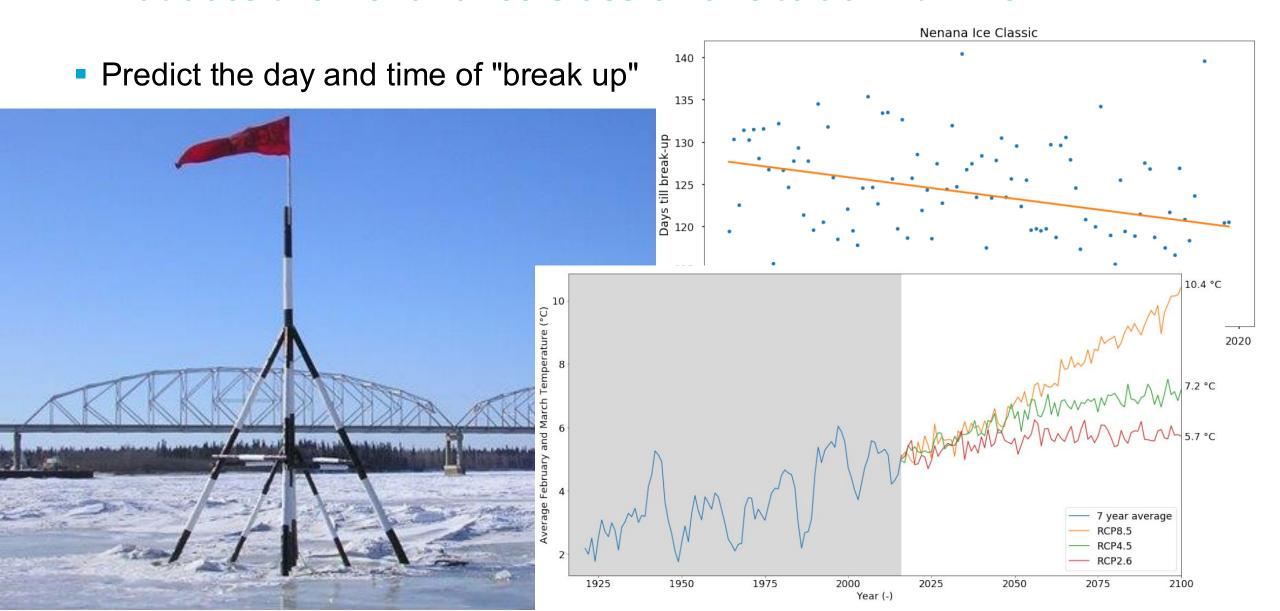
- Models are an <u>abstraction</u> of reality
- There are many possible choices for a model
- No 'right' model, all about <u>purpose</u>
- Need to consider assumptions, uncertainty sources etc.

When dealing with Modelling, Uncertainty and Data, Engineering context matters!

For reliable Engineering, understanding tools for Modelling, Uncertainty and Data matters!






Common interest?

Nenana Alaska Ice Classic

What does the Nenana Ice Classic have to do with MUDE?

What does the Nenana Ice Classic have to do with MUDE?

- Analyze the data (time series, signal processing)
- Formulate physics-based and data-driven models to predict break-up date and time
- Maximize probability of success
- Optimize the betting strategy

These are all MUDE topics!

What now?

- Fill out the Questionnaire
- Visit the MUDE Website and read it
- Read the Book!
- Get your computer ready with PA1.1

- See you in class tomorrow at 10:45!
 - Keep an eye on Brightspace

MUDE (CEGM1000 25) Introductory Questionnaire

https://forms.office.com/e/itvaQC3jaR

