
CEGM1000
Modelling, Uncertainty
and Data for Engineers

Week 2.1
Numerical methods for
PDEs

1

Marcel Zijlema

VLAM GEBRUIKEN

1 Selecteer de vlam. Klik rechter-
muisknop en kies ‘Kopiëren’.

2 Plak deze op de gewenste slide. Klik
rechtermuisknop om de vlam een
opvulkleur te geven.

at the end of this lecture, you should be able to

• identify various PDEs based on their properties

• explain the Finite Difference Method

• apply central differences and upwind schemes

• discuss the pros and cons of these numerical schemes

with respect to

• accuracy,

• stability, and

• numerical artefacts

Learning Objectives

2

this lecture
▪ today's lecture follows directly on from week 2 of Q1 (Numerical Modelling)

▪ week 1.2 treated numerical methods for ODEs

▪ week 2.1 (this week) will treat numerical methods for PDEs

▪ nature of PDEs

▪ Finite Difference Method (FDM)

▪ central difference scheme − FTCS

▪ upwind scheme − FTBS

▪ consistency, stability and convergence

▪ truncation error

▪ numerical artefacts

▪ numerical diffusion

▪ wiggles

3

wave dynamics in a barred coastal region (Rijnsdorp et al., 2015)

4

Delft’s wave models (at gitlab.tudelft.nl)

▪ SWAN
(Booij et al, 1999)

▪ SWASH
(Zijlema et al, 2011)

(), ,
, ,

g x g y

E E E E
c c c S x y

t x y





   
+ + + =

   

0
hu hv

t x y

  
+ + =

  

spectral wave model

non-hydrostatic

wave-flow model

2 2

2 2

| |
f h

u u u u u u u
u v g c

t x y x h x y




     
+ + + + = +

     

 
 
 

2 2

2 2

| |
f h

v v v v v v v
u v g c

t x y y h x y




     
+ + + + = +

     

 
 
 

5

nature of PDEs

▪ elliptic: steady, the perturbation in one location affects the rest of domain instantaneously

▪ parabolic: unsteady, the information propagates in all directions at an infinite speed

▪ hyperbolic: unsteady, the information propagates along a characteristic at a finite speed

6

nature of PDEs

▪ elliptic: steady, the perturbation in one location affects the rest of domain instantaneously

▪ parabolic: unsteady, the information propagates in all directions at an infinite speed

▪ hyperbolic: unsteady, the information propagates along a characteristic at a finite speed

6

the physical

behaviour of PDEs

requires a suitable

numerical scheme

to solve them!

2 2

2 2
(,)f x y

x y

  
+ =

 

2

2

T T

t x


 
=

 

0
c c
u

t x

 
+ =

 

Poisson equation:

diffusion equation:

advection equation:

Delft’s wave models

▪ SWAN

▪ SWASH

(), ,
, ,

g x g y

E E E E
c c c S x y

t x y





   
+ + + =

   

0
hu hv

t x y

  
+ + =

  

2 2

2 2

| |
f h

u u u u u u u
u v g c

t x y x h x y




     
+ + + + = +

     

 
 
 

2 2

2 2

| |
f h

v v v v v v v
u v g c

t x y y h x y




     
+ + + + = +

     

 
 
 

7

well-posed problems

▪ a boundary value problem (BVP) consists of

▪ the PDE itself

▪ the enclosed spatial domain Ω on which the PDE is required to be satisfied

▪ the boundary conditions that the solution must be met at the boundaries of Ω

▪ in case of a time-dependent problem, initial condition(s) must be included as well

▪ a BVP is said to be well-posed if

▪ a solution to the problem exists,

▪ the solution is unique, and

▪ the solution is not sensitive to boundary / initial conditions (closely related to stability of the PDE)

8

we will be dealing with the following PDEs this week …

▪ the diffusion equation

▪ today’s lecture

▪ Programming Assignment 2.1 (Tuesday)

▪ the advection equation

▪ today’s lecture

▪ Workshop Assignment 2.1 (Wednesday)

▪ the advection-diffusion equation

▪ today’s lecture

▪ Group Assignment 2.1 (Friday)

9

2

2

T T

t x


 
=

 

0
c c
u

t x

 
+ =

 

2

2
0

c c c
u

t x x


  
+ − =

  

1D, homogeneous,
2nd order linear PDE
of parabolic type

the diffusion equation
▪ we consider the following equation

▪ an example of application is the heat transfer in a rod

▪ the associated PDE is known as the heat equation

▪ Fourier’s law of thermal conduction: heat flow q is product of thermal diffusivity  and negative temperature gradient

(from high temperature to low temperature)

10

2

2

T T

t x


 
=

 

© 2020 theDataTalks

T
q

x



= −


0
T q

t x

 
+ =

 

numerical approach

▪ Finite Difference Method (FDM)

▪ a derivative of an unknown is approximated by means of finite differences

▪ use Taylor series expansion to approximate the derivative to a certain order of accuracy

▪ difference between exact derivative and finite difference formula determines the truncation error

11

0

0 1 01

1 0

() ()

x x

y x y xd yy

d xx

y

x

− −


− 


forward difference quotient:

()
0

1 0

x

x

y ydy
O x

dx x


−
= − = 



semi discretization of diffusion equation

▪ Method of Lines (MOL)

▪ discretize the PDE in space first, leading to a system of ODEs – semi discretization

▪ then integrate the system of ODEs over time

▪ semi discretization by means of forward, backward or central difference scheme

▪ second derivatives are always approximated using central differences

▪ define 1D equidistant grid with Δx the mesh size

▪ the diffusion equation is approximated as follows (ignore boundary points):

12

2

1 1

2

2
1, 2, , 1

2
,m m m m

T T T T
m M

dT T

t x dt x
  + −

− + 
=  =

  
= −

1m +1m − m0m = Mm =

time integration

▪ use the forward Euler scheme to integrate the semi-discrete equation, as follows

▪ this finite difference scheme is called the Forward in Time and Central in Space (FTCS) scheme

▪ the FTCS scheme is called explicit since the new solution depends only on the solutions at the preceding time step

▪ its stencil displays the links between different unknowns and looks like

13

1 1

2 2

1

1 122
m m m m m m

n

m

n n n

m

n

mT T T T TdT T T T

dt tx x
 + − + −

+
− − +− +

=
 

 =


with n the time level and Δt a (fixed) time step (= difference between two successive time instants tn+1 and tn)

1m +m1m −

1n +

n

Python implementation

▪ The FTCS scheme can be rewritten in the following numerical recipe

▪ in turn, this recipe can be implemented as an algorithm on a computer by means of a high-level computer language

▪ Fortran, C, Matlab, Java, Python

▪ d

14

()2

1

1 12n n n n n

m m m m m

t

x
T T T T T

+

+ −


= +


− +

truncation error

▪ the truncation error of the FTCS scheme is given by

▪ use Taylor expansion series to show that

▪ rule: the solution error, defined as , and the truncation error are of the same order

▪ when both Δt and Δx are reduced by a factor of 2, the solution error will be reduced by a factor of 8 (= 2 x 4)

15

2

1 1 1
,

(,) (,) (,) 2 (,) (,)m n m n m n m n m n
t x

T x t T x t T x t T x t T x t

t x
 + + −

 

− − +

 
= −

()2, ,t x O t x  =  

note that xm+1 = xm + Δx and tn+1 = tn + Δt

(,)
n n

m m n m
e T x t T= − ,t x 

consistency and convergence

▪ a numerical scheme is called consistent if and only if

▪ a numerical scheme is said to be convergent if

▪ a basic rule is the following

16

consistency + stability → convergence

,
, 0
lim 0t x
x t

 
  →

=

, 0
lim 0n

m
x t

e
  →

=

stability
▪ a numerical scheme is said to be stable if and only if

▪ a common method to analyze the stability of the scheme is based on Fourier decomposition and is

known as the Von Neumann stability analysis method

▪ this method provides a theoretical basis to proof the correctness of the stability condition

▪ another method that can correctly determine the stability of the scheme is the matrix method

▪ simple but heuristic stability methods are also possible but usually do not prove the correctness of

the stability

▪ such methods are typically PDE dependent

17

, ,n

mT K m n  

where Δt and Δx are fixed(!) and K is a constant independent of Δt and Δx

stability of FTCS
▪ the true solution of the diffusion equation is always non-negative since

▪ the concentration (e.g., heat, salt) or the associated mass is from physical point of view non-negative

▪ the initial and boundary conditions are for this reason non-negative

▪ the diffusion process is conserving: it does not create nor destroy amount of mass within a given volume – if you

start with a non-negative amount of mass, you cannot end up with a negative amount

▪ requirement: the numerical solution generated by a numerical scheme must be non-negative, that is,

▪ we derive heuristically the following (prototype) stability limit of the FTCS scheme:

▪ the FTCS scheme is conditionally stable: a choice of Δx will limit the time step!

▪ in practice: Δt is often too small with respect to accuracy!

18

, 0, , , 0,1, 2,0n

m m M nT  =  =

2

1

2

t

x

 




the advection equation
▪ we consider the following equation

▪ it describes the propagation of a perturbation (e.g., wave, cloud of pollutant) along the domain x  [0,L]

19

0
c c
u

t x

 
+ =

 

x L=0x =

the advection equation
▪ we consider the following equation

▪ it describes the propagation of a perturbation (e.g., wave, cloud of pollutant) along the domain x  [0,L]

19

0
c c
u

t x

 
+ =

 

x L=0x =

the advection equation
▪ we consider the following equation

▪ it describes the propagation of a perturbation (e.g., wave, cloud of pollutant) along the domain x  [0,L]

19

0
c c
u

t x

 
+ =

 

0u 
x L=0x =

the advection equation
▪ we consider the following equation

▪ it describes the propagation of a perturbation (e.g., wave, cloud of pollutant) along the domain x  [0,L]

while the shape of the perturbation is preserved

19

0
c c
u

t x

 
+ =

 

0u 
x L=0x =

the advection equation
▪ we consider the following equation

▪ it describes the propagation of a perturbation (e.g., wave, cloud of pollutant) along the domain x  [0,L]

while the shape of the perturbation is preserved

▪ one initial condition (state of c(x) at t = 0 along the entire domain) and one boundary condition at the

boundary from which the perturbation is being propagated

▪ in case u > 0, we impose the following boundary condition: c(0,t) = f(t) (on west side)

▪ in case u < 0, we impose the following boundary condition: c(L,t) = f(t) (on east side)

19

0
c c
u

t x

 
+ =

 

0u 
x L=0x =

discretization of advection equation
▪ we use backward difference scheme to capture the information upstream properly

▪ central differences does not care about the direction of propagation, which leads to instabilities!

▪ we apply again forward Euler scheme

▪ the resulting scheme is the Forward in Time, Backward in Space (FTBS) scheme

▪ the truncation error of the FTBS scheme is given by

▪ the FTBS scheme is explicit, and its stencil looks like

20

1

1 00
n n n n

m m m mc

t x

c c

t x

c c c
uu

+

− 




−

  
+ =

−
+ =

(), ,t x O t x  =  

m1m −
n

1n +

discretization of advection equation
▪ we use backward difference scheme to capture the information upstream properly

▪ central differences does not care about the direction of propagation, which leads to instabilities!

▪ we apply again forward Euler scheme

▪ the resulting scheme is the Forward in Time, Backward in Space (FTBS) scheme

▪ the truncation error of the FTBS scheme is given by

▪ the FTBS scheme is explicit, and its stencil looks like

20

1

1 00
n n n n

m m m mc

t x

c c

t x

c c c
uu

+

+ 




−

  
+

−
+ ==

(), ,t x O t x  =  

m 1m +

1n +

n

the advection-diffusion equation
▪ we consider the following equation in domain 0 ≤ x ≤ 1

▪ the following boundary conditions are provided

▪ c(0,t) = 0 at west side, and

▪ c(1,t) = 1 at east side

▪ the steady-state solution is of the boundary layer type

▪ effects of diffusion are confined in a thin layer
(“inner region”) near the east boundary

▪ the rest of the domain (“outer region”) is treated as
inviscid

▪ the larger the , the thicker is the boundary layer

2

2
0

c c c
u

t x x


  
+ − =

  
 

discretization of advection-diffusion equation (I)

▪ the FTCS scheme is given by

▪ its truncation error is given by

▪ note: accuracy in time is irrelevant here!

▪ the numerical boundary layer solution

generated by FTCS may look like

1

1

1 1

2

1

2

2
0

n n n n n

m m m

n n

m m m mc

t xx

c c cc c
u

c
− ++

+

−



−

 

− +
+ − =

−

()2, ,t x O t x  =  

discretization of advection-diffusion equation (II)

▪ the FTBS scheme is given by (u > 0)

▪ its truncation error is given by

▪ note: time accuracy not relevant!

▪ the numerical boundary layer solution

generated by FTBS may look like

▪ the numerical boundary layer is thicker, because …

▪ … the upwind scheme produces numerical diffusion!

11

1

1

2

2
0

n nn n n n n

m m m mm mm

x

c

t x

ccc c c
u

c


+

+− −



−

 

− +−
+ − =

(), ,t x O t x  =  

numerical diffusion

▪ Q: what is the amount of numerical diffusion produces by the first order upwind scheme?

▪ A: consider the difference between FTBS and FTCS and reformulate it as a discrete diffusion term

▪ the amount of numerical (or artificial) diffusion is given by

▪ numerical boundary layer solution produces by FTBS is rather inaccurate if

24

1 1 1

2

11

2

1 2

2

n n n n n

m mm m

n

mm

n

m

xx x
u u u x
c c c c cc c+ − + −−

 
− −

−−
=

+


−

1

2
a u x = + 

a 

stability of FTBS

▪ reconsider FTBS applied to the advection equation

▪ since the upwind scheme produces numerical diffusion, the FTBS solution must be non-negative(!)

▪ we can derive stability condition(s) for FTBS based on the following requirement

▪ the (prototype) stability condition of the FTBS scheme is given by

25

1

1 00
n n n n

m m m mc

t x

c c

t x

c c c
uu

+

− 



−


  
+ =

−
+ =

, 0, , , 0,1, 2,0n

m m M nc  =  =

0 1
u t

x



  



Courant number

stability of FTBS

▪ reconsider FTBS applied to the advection equation

▪ since the upwind scheme produces numerical diffusion, the FTBS solution must be non-negative(!)

▪ we can derive stability condition(s) for FTBS based on the following requirement

▪ the (prototype) stability condition of the FTBS scheme is given by

25

1

1 00
n n n n

m m m mc

t x

c c

t x

c c c
uu

+

− 



−


  
+ =

−
+ =

, 0, , , 0,1, 2,0n

m m M nc  =  =

0 1
u t

x



  



CFL condition

wiggles
▪ central differences applied to the advection term are prone to generate spurious oscillations near steep gradients,

especially if the mesh is relatively coarse

▪ this is a numerical artefact called wiggles

▪ let’s go back to the advection-diffusion equation and reconsider its approximation by the FTCS scheme

▪ we reconsider the numerical boundary layer solution

produces by FTCS but at a coarser grid

▪ the solution now oscillates around the boundary layer

▪ the criterion for preventing wiggles is provided by the

mesh-Péclet number and is given by

2 2
u

P
x





−   

wiggles
▪ central differences applied to the advection term are prone to generate spurious oscillations near steep gradients,

especially if the mesh is relatively coarse

▪ this is a numerical artefact called wiggles

▪ let’s go back to the advection-diffusion equation and reconsider its approximation by the FTCS scheme

▪ we reconsider the numerical boundary layer solution

produces by FTCS but at a coarser grid

▪ the solution now oscillates around the boundary layer

▪ the criterion for preventing wiggles is provided by the

mesh-Péclet number and is given by

2 2
u

P
x





−   

wiggles
▪ the usual mechanism to counteract wiggles is numerical diffusion

▪ wiggles can be suppressed by adding artificial diffusion

▪ however, this must be done carefully: not too much, but also not too little

▪ one way to prevent wiggles is to apply the upwind scheme

▪ it usually produces more than enough

numerical diffusion(!)

▪ for instance, we consider the same coarse grid as

in the previous example (PΔ = 4)

▪ the numerical boundary layer produces by FTBS is

▪ adding always reduces the

mesh-Péclet number below 2

1
2a
u x = 

wiggles
▪ the usual mechanism to counteract wiggles is numerical diffusion

▪ wiggles can be suppressed by adding artificial diffusion

▪ however, this must be done carefully: not too much, but also not too little

▪ one way to prevent wiggles is to apply the upwind scheme

▪ it usually produces more than enough

numerical diffusion(!)

▪ for instance, we consider the same coarse grid as

in the previous example (PΔ = 4)

▪ the numerical boundary layer produces by FTBS is

▪ adding always reduces the

mesh-Péclet number below 2

1
2a
u x = 

instationary advection-diffusion equation

▪ another class of problems is described by an instationary advection-diffusion equation

▪ the propagation of a disturbance (e.g., wave, cloud of pollutant) in which it spreads over a certain distance

simultaneously

▪ here, discretization of time derivative becomes relevant, including its order of accuracy

▪ during the GA 2.1 another time integration scheme will be dealt with

▪ the second order Crank-Nicolson scheme (or trapezoidal rule)

▪ more accurate than forward and backward Euler schemes

28

0x = x L=

key points

▪ advection dominated problems require different numerical treatment than diffusion dominated problems

▪ central differences is second order accurate but is prone to generate wiggles

▪ first order upwind scheme produces numerical diffusion and diminishes spurious oscillations

▪ explicit schemes are conditionally stable (or occasionally unconditionally unstable!)

▪ prototype stability limit for diffusion problems:

▪ prototype stability limit for advection problems: via Courant number,

▪ wiggles in solution to advection-diffusion equation can be avoided if mesh-Péclet number is less than or equal 2

29

1 

2 1
2

/t x  

	Slide 1
	Slide 2
	Slide 3: this lecture
	Slide 4
	Slide 5: Delft’s wave models (at gitlab.tudelft.nl)
	Slide 6: nature of PDEs
	Slide 7: nature of PDEs
	Slide 8: Delft’s wave models
	Slide 9: well-posed problems
	Slide 10: we will be dealing with the following PDEs this week …
	Slide 11: the diffusion equation
	Slide 12: numerical approach
	Slide 13: semi discretization of diffusion equation
	Slide 14: time integration
	Slide 15: Python implementation
	Slide 16: truncation error
	Slide 17: consistency and convergence
	Slide 18: stability
	Slide 19: stability of FTCS
	Slide 20: the advection equation
	Slide 21: the advection equation
	Slide 22: the advection equation
	Slide 23: the advection equation
	Slide 24: the advection equation
	Slide 25: discretization of advection equation
	Slide 26: discretization of advection equation
	Slide 27: the advection-diffusion equation
	Slide 28: discretization of advection-diffusion equation (I)
	Slide 29: discretization of advection-diffusion equation (II)
	Slide 30: numerical diffusion
	Slide 31: stability of FTBS
	Slide 32: stability of FTBS
	Slide 33: wiggles
	Slide 34: wiggles
	Slide 35: wiggles
	Slide 36: wiggles
	Slide 37: instationary advection-diffusion equation
	Slide 38: key points

