CEGM1000

Modelling, Uncertainty
and Data for Engineers

Week 2.1

Numerical methods for
PDEs

Marcel Zijlema

e
TUDelft

Modelling, Uncerta}nty, and Data for Engineers

%]
TUDelft

Learning Objectives

at the end of this lecture, you should be able to

* identify various PDEs based on their properties
* explain the Finite Difference Method

* apply central differences and upwind schemes

* discuss the pros and cons of these numerical schemes
with respect to

° accuracy,
* stability, and

°* numerical artefacts

this lecture

today's lecture follows directly on from week 2 of Q1 (Numerical Modelling)
= week 1.2 treated numerical methods for ODEs
= week 2.1 (this week) will treat numerical methods for PDEs
nature of PDEs
Finite Difference Method (FDM)
= central difference scheme — FTCS
= upwind scheme — FTBS
= consistency, stability and convergence
= truncation error
= numerical artefacts
= numerical diffusion

= wiggles

%
TUDelft

wave dynamics in a barred coastal region (Rijnsdorp et al., 2015) Egmond aan Zee 4
/
SWAN ,
\ B El'gin v
Invsgness E
SWASH “Scotla)
Wave buoy g : G1a§,gfw‘\: Edinburgh
g United
c%) K i‘n g d o mosmdeﬂand
2 1
Isle of Man
Y Blackpool fYork
Manchester
et 3

o B
Haarlem 5.0Amstes am

. f s+ A | Steglit:
7 Bielefeld ™ Brunswick. 5
& [52 3

Wales - : TheHagueQ’V-N
A g L i . “).)
= __Bristol London
T .t
Card!.ﬂ Town Centre s

A Southampton ~ ’
il s

. Exetér i &
t: Os 1 Portsmoiith CEMELED
Plyﬂ'!’amh t\

" Tilehursta-- AT

‘Germany

-ty ¢ o,

~aleigh-on-Sea __~—Hall
E /

100

English
Channel FanS

-100

Ima . Co

=
-300 R = T
b

_—
E O —— Dﬂo o

-500

a0a GO0 400 200 . 0 -10 L . |
1000 750 500 250

Delft's wave models (at gitlab.tudelft.nl)

» SWAN OF
(Booij et al, 1999) —+°‘

spectral wave model

o8 e
« SWASH ot

non-hydrostatic
wave-flow model

(Zijlema et al, 2011) ,
ou ou
—+u E L‘ (
ov 0v 0v 3

—+u—+v— g——l—c
o Ox 0Oy

%
TUDelft

nature of PDEs

= elliptic: steady, the perturbation in one location affects the rest of domain instantaneously
= parabolic: unsteady, the information propagates in all directions at an infinite speed

= hyperbolic: unsteady, the information propagates along a characteristic at a finite speed

%
TUDelft

nature of PDEs

= elliptic: steady, the perturbation in one location affects the rest of domain instantaneously

82¢ a2¢ 2D, non-home,
: . _ N 9ene
Poisson equation: - + o = (%)) 2 order iy, Pbé‘/‘s,
the physical
= parabolic: unsteady, the information propagates in all directions at an infinite speed behaviour of PDEs
requires a suitable
2 e, numerical scheme
diffusion equation: 5_T — K@_T 1D, om0t V\ICZ\:'PDE to solve them!
at ax2 na proley ne

= hyperbolic: unsteady, the information propagates along a characteristic at a finite speed

advection equation: —+yu—=0 1 pyoley L?n;ews'
ot Ox rPpE

%
TUDelft

Delft's wave models

=B, non-py

= SWAN OF OF OF OFE

—+4c —+c. —+c,—=8(x,y,0 st ogeneous,
ot & Ox &7 ay ’ 00 (4) ;[horder%’ PDE
Yperboli, type
g 0 Ohu Oh
SWASH G O O _
o ox 0Oy

ou Ou Ou o¢ |u|u o’u O’u wolic
5+u8x+vﬁy+ga+cf =V T ggsmmof@“m” /

—+u—+v—+g—+c,

ov ov ov o¢ |v|v_v 82v+82v
ot ox Oy oy '

%
TUDelft

well-posed problems

= a boundary value problem (BVP) consists of
= the PDE itself
= the enclosed spatial domain Q on which the PDE is required to be satisfied

= the boundary conditions that the solution must be met at the boundaries of Q

= in case of a time-dependent problem, initial condition(s) must be included as well

= aBVP is said to be well-posed if
= a solution to the problem exists,
= the solution is unique, and

= the solution is not sensitive to boundary / initial conditions (closely related to stability of the PDE)

%
TUDelft

we will be dealing with the following PDESs this week ...

= the diffusion equation or oO°'T

Y 2
= today’s lecture ot o
= Programming Assignment 2.1 (Tuesday)

= the advection equation oc oc

- today’s lecture Ot Oox
= Workshop Assignment 2.1 (Wednesday)

2 1D, homogeneous,
: @ + 1 @ — K _a S = 2" order Linear PDE
- today’s lecture Ot Ox Ox of parabolic type

= Group Assignment 2.1 (Friday)

%
TUDelft

the diffusion equation

we consider the following equation

oT o°T
=K

5_ ox*

an example of application is the heat transfer in a rod

A

= the associated PDE is known as the heat equation

= Fourier's law of thermal conduction: heat flow q is product of thermal diffusivity x and negative temperature gradient
(from high temperature to low temperature)

Metal Rod
‘ > cowSCNatLoW
Heat Flow Law
oT ol 0Oq
q= —Ka— > + = O
X ot Ox

]
T U D e I ft © 2020 theDataTalks

numerical approach

= Finite Difference Method (FDM)

= a derivative of an unknown is approximated by means of finite differences

= use Taylor series expansion to approximate the derivative to a certain order of accuracy

= difference between exact derivative and finite difference formula determines the

YN

Y2
Vi

Yo

solution

solution

%
TUDelft

RV

forward difference quotient:

dy

dx

X0

_dy
dx

X0

Y1~ Vo

Ax

~ (%) —y(x,) ~ V1= Vo

X, — X, Ax

O(Ax)

semi discretization of diffusion equation

= Method of Lines (MOL)

= discretize the PDE in space first, leading to a system of ODEs — semi discretization

= then integrate the system of ODEs over time
= semi discretization by means of forward, backward or central difference scheme
= second derivatives are always approximated using central differences

= define 1D equidistant grid with Ax the mesh size

= the diffusion equation is approximated as follows (ignore boundary points):

2
a_T:KﬁT — di:KTmH_sz-l_Tm_l, m:ljz,...’M_l t\/\(iSeWelL
ot ox’ dt Ax’

%
TUDelft

time integration

use the forward Euler scheme to integrate the semi-discrete equation, as follows

dTm Tm+1 B 2Tm + Tm—l Tnliﬂ_l B T;: Tn’;+1 B 2Tn711 + Tn’z—l

=K . = =K .
dt Ax At Ax

with n the time level and At a (fixed) time step (= difference between two successive time instants ¢,,, and t,)

this finite difference scheme is called the Forward in Time and Central in Space (FTCS) scheme

the FTCS scheme is called explicit since the new solution depends only on the solutions at the preceding time step

its stencil displays the links between different unknowns and looks like

n—+1 @

23
TUDelft "o o o

Python implementation

= The FTCS scheme can be rewritten in the following numerical recipe

At(

n+l n
I =T +KAx2

Ty, -2T; +T..)

m+1

= in turn, this recipe can be implemented as an algorithm on a computer by means of a high-level computer language

= Fortran, C, Matlab, Java, Python

Loop through time
« for n in range(nt-1):

solution in the interior
for m in range(l,nx-1):
T(n+l,m] = T[n,m] + kappa * dt/dx/dx * (T[n,m+1]-2*T[n,m]+T[n,m-1])

%
TUDelft

truncation error

= the truncation error of the FTCS scheme is given by

At Ax’

T('xm’ n+1) T(xm’ n) K_T('xmﬂ’ n) 2T('xm’ n)+T(xm 1° n)

TAt,Ax T

= use Taylor expansion series to show that
T = O(At,sz)

note that x,.,, = x,, + Axand t,,, = t, + At

= rule: the solution error, defined as e; = T(x tn) — 77: , and the truncation error 7,, ,, are of the same order

m?

= when both Af and Ax are reduced by a factor of 2, the solution error will be reduced by a factor of 8 (=2 x 4)

%
TUDelft

consistency and convergence

= a numerical scheme is called consistent if and only if

Iim 7 =0

Ax. At ALAY

= a numerical scheme is said to be convergent if

lim e =0
Ax,At—0

= a basic rule is the following

% /
TUDelft gy

stability

a numerical scheme is said to be stable if and only if

.

< K, Vm, Vn

where At and Ax are fixed(!) and K is a constant independent of Af and Ax

a common method to analyze the stability of the scheme is based on Fourier decomposition and is
known as the Von Neumann stability analysis method

= this method provides a theoretical basis to proof the correctness of the stability condition diffieult and elaborated

- another method that can correctly determine the stability of the scheme is the matrix method __"

simple but heuristic stability methods are also possible but usually do not prove the correctness of
the stability

= such methods are typically PDE dependent

]
TU Delft

stability of FTCS

the true solution of the diffusion equation is always non-negative since

= the concentration (e.g., heat, salt) or the associated mass is from physical point of view non-negative
= the initial and boundary conditions are for this reason non-negative

= the diffusion process is conserving: it does not create nor destroy amount of mass within a given volume — if you
start with a non-negative amount of mass, you cannot end up with a negative amount

requirement: the numerical solution generated by a numerical scheme must be non-negative, that is,

Tn}; > 0, Vm:O,---,M, \v’n:(),l,z,...

we derive heuristically the following (prototype) stability limit of the FTCS scheme:

K At < | correct according o

gsts

A)CZ 2 vaNeumawwﬂML

the FTCS scheme is conditionally stable: a choice of Ax will limit the time step!

= in practice: At is often too small with respect to accuracy!

%
TUDelft

the advection equation

= we consider the following equation

%
TUDelft

the advection equation

= we consider the following equation

%
TUDelft

the advection equation

= we consider the following equation

= it describes the propagation of a perturbation (e.g., wave, cloud of pollutant) along the domain x < [0,L]

u>0

%
TUDelft

the advection equation

we consider the following equation

it describes the propagation of a perturbation (e.g., wave, cloud of pollutant) along the domain x < [0,L]
while the shape of the perturbation is preserved

u>0

%
TUDelft

the advection equation

we consider the following equation

it describes the propagation of a perturbation (e.g., wave, cloud of pollutant) along the domain x < [0,L]
while the shape of the perturbation is preserved

u>0

= one initial condition (state of c¢(x) at t = 0 along the entire domain) and one boundary condition at the
boundary from which the perturbation is being propagated

= in case u > 0, we impose the following boundary condition: ¢(0,t) = f(t) (on west side)

= in case u < 0, we impose the following boundary condition: ¢(L,t) = f(t) (on east side)

%
TUDelft

discretization of advection equation
to e tested

we use backward difference scheme to capture the information upstream properly WS 2.1

= central differences does not care about the direction of propagation, which leads to instabilities!

we apply again forward Euler scheme

the resulting scheme is the Forward in Time, Backward in Space (FTBS) scheme

n+l n n n
%"‘“?ZO = O _C’”+uc’”_c’”‘1 =0 ere we assume > o
t X At Ax

the truncation error of the FTBS scheme is given by

Ton = O(ALAX)] *

the FTBS scheme is explicit, and its stencil looks like

%
TUDelft ne

m—1

S0

discretization of advection equation
to e tested

we use backward difference scheme to capture the information upstream properly WS 2.1

= central differences does not care about the direction of propagation, which leads to instabilities!

we apply again forward Euler scheme

the resulting scheme is the Forward in Time, Backward in Space (FTBS) scheme

n+1 n n n
@4_“@:0 N Cm —Cm_'_quH—Cm :O Vlereweassumeu<o(g)
Ot Ox At Ax

the truncation error of the FTBS scheme is given by

Tyr = O(ALAY) nt1®

the FTBS scheme is explicit, and its stencil looks like

3
TUDelft ne o

m m+1

the advection-diffusion equation

= we consider the following equation in domain 0 < x <1

oc oc o°c
—+u—-xk—=0
ot Ox Ox

= the following boundary conditions are provided
. C(O,t) = 0 at west Side, and tLVVLe-LV\IUl@'PeV\’deV\’t"
= ¢(1,f) =1 at east side 08l

= the steady-state solution is of the boundary layer type

0.6 —

= effects of diffusion are confined in a thin layer
(“inner region”) near the east boundary <

= the rest of the domain (“outer region”) is treated as il
inviscid

= the larger the k; the thicker is the boundary layer

]
TUDelft | _‘ ' ‘_ ‘_ |

discretization of advection-diffusion equation (I)

= the FTCS scheme is given by / always central differences
n+l n n n n n n
Cm ~Cn y Cm+l B Cm—l — K Cm+1 - chzq + Cm—l — O
At 2Ax Ax
N o

- its truncation error is givenby 7, , = O(At,sz) osl

= note: accuracy in time is irrelevant here! o5

= the numerical boundary layer solution
generated by FTCS may look like

04—

02

-0.2 -

3
TUDelft o4l ﬁ ' { ‘_

x [m]

discretization of advection-diffusion equation (II)

{ ces
always contral difference

= the FTBS scheme is given by (u > 0)

— cXaCt SOlUtION
—&— upwind method

+ its truncation error is givenby 7, . = O(At,Ax)

0.8 -

= note: time accuracy not relevant!

06—

= the numerical boundary layer solution
generated by FTBS may look like

04—

= the numerical boundary layer is thicker, because ...

= ... the upwind scheme produces numerical diffusion! .-

TU Delft SRMRINAH AMANRAR RARRAANS SRS

0 0.2 0.4 0.6 0.8
x [m]

numerical diffusion

Q: what is the amount of numerical diffusion produces by the first order upwind scheme?

A: consider the difference between FTBS and FTCS and reformulate it as a

n n n n
U Cm _Cm—l —uy Cm+1 _Cm—l — _lqu
Ax 2Ax

the amount of numerical (or artificial) diffusion is given by

K, :+lqu
2

numerical boundary layer solution produces by FTBS is rather inaccurate if K, > K

%
TUDelft

stability of FTBS

= reconsider FTBS applied to the advection equation

n+l n n n
@—ku%:O = w5 T
Ot Ox At Ax

= since the upwind scheme produces numerical diffusion, the FTBS solution must be non-negative(!)

= we can derive stability condition(s) for FTBS based on the following requirement
C”; >0, VYm=0,----M, Vn=0,12, -

= the (prototype) stability condition of the FTBS scheme is given by

UMt oraing to
0<@=tA <1 o merdivgts

Ax Von Newmann an

\

3
T U D e I ft Courant wumber

stability of FTBS

= reconsider FTBS applied to the advection equation

n+l n n n
Ceu®0 = G T GG
Ot Ox At Ax

= since the upwind scheme produces numerical diffusion, the FTBS solution must be non-negative(!)

= we can derive stability condition(s) for FTBS based on the following requirement
C”; >0, VYm=0,----M, Vn=0,12, -

= the (prototype) stability condition of the FTBS scheme is given by

/ CFL condition
0< o

%
TUDelft

wiggles

central differences applied to the advection term are prone to generate spurious oscillations near steep gradients,
especially if the mesh is relatively coarse

= this is a numerical artefact called wiggles

let’s go back to the advection-diffusion equation and reconsider its approximation by the FTCS scheme

1 : T T T

we reconsider the numerical boundary layer solution | [
produces by FTCS but at a coarser grid [

0.8 -

= the solution now oscillates around the boundary layer

the criterion for preventing wiggles is provided by the
mesh-Péclet number and is given by 0al

qu 0.2 -
-2 < =—— <
2< B === <2 | A

-0.2 -

%
TUDelft oal—t | | % | |

wiggles

central differences applied to the advection term are prone to generate spurious oscillations near steep gradients,

especially if the mesh is relatively coarse

= this is a numerical artefact called wiggles

let’s go back to the advection-diffusion equation and reconsider its approximation by the FTCS scheme

we reconsider the numerical boundary layer solution
produces by FTCS but at a coarser grid

= the solution now oscillates around the boundary layer

the criterion for preventing wiggles is provided by the
mesh-Péclet number and is given by

—2SPE@32
K

%
TUDelft

T T T
— cXaCt SOlUtION
{ || =—6&— central differences

0.8 -

04—

02

-0.2 -

0.4 | | | 1 L

0 0.2 0.4 0.6 0.8

wiggles

= the usual mechanism to counteract wiggles is numerical diffusion

= wiggles can be suppressed by adding artificial diffusion
= however, this must be done carefully: not too much, but also not too little

one way to prevent wiggles is to apply the upwind scheme

= it usually produces more than enough ——oxact soiton |
L —e— upwmd method
numerical diffusion(!)

1

for instance, we consider the same coarse grid as 08
in the previous example (P, = 4)

06—

= the numerical boundary layer produces by FTBS is

- adding kK, = 4 uAx always reduces the
mesh-Péclet number below 2

04—

0.2

here Pa”

%
TUDelft * J %

0.6

0.8

wiggles

= the usual mechanism to counteract wiggles is numerical diffusion

= wiggles can be suppressed by adding artificial diffusion
= however, this must be done carefully: not too much, but also not too little

one way to prevent wiggles is to apply the upwind scheme

= it usually produces more than enough ——oxact soiton |
L —e— upwmd method
numerical diffusion(!)

1

for instance, we consider the same coarse grid as 08
in the previous example (P, = 4)

06—

= the numerical boundary layer produces by FTBS is

- adding kK, = 4 uAx always reduces the
mesh-Péclet number below 2

04—

0.2

here Pa”

%
TUDelft * J %

0.6

0.8

instationary advection-diffusion equation

= another class of problems is described by an instationary advection-diffusion equation

= the propagation of a disturbance (e.g., wave, cloud of pollutant) in which it spreads over a certain distance
simultaneously

x=0 =//k x=1L

= here, discretization of time derivative becomes relevant, including its order of accuracy

to be tested
at GA 2.1

= during the GA 2.1 another time integration scheme will be dealt with
= the second order Crank-Nicolson scheme (or trapezoidal rule)

= more accurate than forward and backward Euler schemes

%
TUDelft

key points

advection dominated problems require different numerical treatment than diffusion dominated problems
= central differences is second order accurate but is prone to generate wiggles
= first order upwind scheme produces numerical diffusion and diminishes spurious oscillations

= explicit schemes are conditionally stable (or occasionally unconditionally unstable!)
\. FTCs applied to

- prototype stability limit for diffusion problems: xAt/Ax* < % advectipn, equati
Lon

= prototype stability limit for advection problems: via Courant number, a| <1

= wiggles in solution to advection-diffusion equation can be avoided if mesh-Péclet number is less than or equal 2

%
TUDelft

	Slide 1
	Slide 2
	Slide 3: this lecture
	Slide 4
	Slide 5: Delft’s wave models (at gitlab.tudelft.nl)
	Slide 6: nature of PDEs
	Slide 7: nature of PDEs
	Slide 8: Delft’s wave models
	Slide 9: well-posed problems
	Slide 10: we will be dealing with the following PDEs this week …
	Slide 11: the diffusion equation
	Slide 12: numerical approach
	Slide 13: semi discretization of diffusion equation
	Slide 14: time integration
	Slide 15: Python implementation
	Slide 16: truncation error
	Slide 17: consistency and convergence
	Slide 18: stability
	Slide 19: stability of FTCS
	Slide 20: the advection equation
	Slide 21: the advection equation
	Slide 22: the advection equation
	Slide 23: the advection equation
	Slide 24: the advection equation
	Slide 25: discretization of advection equation
	Slide 26: discretization of advection equation
	Slide 27: the advection-diffusion equation
	Slide 28: discretization of advection-diffusion equation (I)
	Slide 29: discretization of advection-diffusion equation (II)
	Slide 30: numerical diffusion
	Slide 31: stability of FTBS
	Slide 32: stability of FTBS
	Slide 33: wiggles
	Slide 34: wiggles
	Slide 35: wiggles
	Slide 36: wiggles
	Slide 37: instationary advection-diffusion equation
	Slide 38: key points

