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VLAM GEBRUIKEN

1 Selecteer de vlam. Klik rechter-
muisknop en kies ‘Kopiëren’. 

2 Plak deze op de gewenste slide. Klik 
rechtermuisknop om de vlam een 
opvulkleur te geven.

at the end of this lecture, you should be able to

• identify various PDEs based on their properties

• explain the Finite Difference Method

• apply central differences and upwind schemes

• discuss the pros and cons of these numerical schemes 

with respect to

• accuracy,

• stability, and

• numerical artefacts

Learning Objectives
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this lecture
▪ today's lecture follows directly on from week 2 of Q1 (Numerical Modelling)

▪ week 1.2 treated numerical methods for ODEs

▪ week 2.1 (this week) will treat numerical methods for PDEs

▪ nature of PDEs

▪ Finite Difference Method (FDM)

▪ central difference scheme − FTCS

▪ upwind scheme − FTBS

▪ consistency, stability and convergence

▪ truncation error

▪ numerical artefacts

▪ numerical diffusion

▪ wiggles
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wave dynamics in a barred coastal region (Rijnsdorp et al., 2015)
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Delft’s wave models (at gitlab.tudelft.nl)

▪ SWAN                                                                                                         
(Booij et al, 1999)

▪ SWASH                                                                                                   
(Zijlema et al, 2011)
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nature of PDEs

▪ elliptic: steady, the perturbation in one location affects the rest of domain instantaneously

▪ parabolic: unsteady, the information propagates in all directions at an infinite speed

▪ hyperbolic: unsteady, the information propagates along a characteristic at a finite speed
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the physical 

behaviour of PDEs 

requires a suitable 

numerical scheme 

to solve them!

2 2

2 2
( , )f x y

x y

  
+ =

 

2

2

T T

t x


 
=

 

0
c c
u

t x

 
+ =

 

Poisson equation:

diffusion equation:

advection equation:



Delft’s wave models

▪ SWAN

▪ SWASH
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well-posed problems

▪ a boundary value problem (BVP) consists of

▪ the PDE itself

▪ the enclosed spatial domain Ω on which the PDE is required to be satisfied

▪ the boundary conditions that the solution must be met at the boundaries of Ω

▪ in case of a time-dependent problem, initial condition(s) must be included as well

▪ a BVP is said to be well-posed if

▪ a solution to the problem exists,

▪ the solution is unique, and

▪ the solution is not sensitive to boundary / initial conditions (closely related to stability of the PDE)
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we will be dealing with the following PDEs this week …

▪ the diffusion equation

▪ today’s lecture

▪ Programming Assignment 2.1 (Tuesday)

▪ the advection equation

▪ today’s lecture

▪ Workshop Assignment 2.1 (Wednesday)

▪ the advection-diffusion equation

▪ today’s lecture

▪ Group Assignment 2.1 (Friday)
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the diffusion equation
▪ we consider the following equation

▪ an example of application is the heat transfer in a rod

▪ the associated PDE is known as the heat equation

▪ Fourier’s law of thermal conduction: heat flow q is product of thermal diffusivity  and negative temperature gradient 

(from high temperature to low temperature)
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numerical approach

▪ Finite Difference Method (FDM)

▪ a derivative of an unknown is approximated by means of finite differences

▪ use Taylor series expansion to approximate the derivative to a certain order of accuracy

▪ difference between exact derivative and finite difference formula determines the truncation error
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semi discretization of diffusion equation

▪ Method of Lines (MOL)

▪ discretize the PDE in space first, leading to a system of ODEs – semi discretization

▪ then integrate the system of ODEs over time

▪ semi discretization by means of forward, backward or central difference scheme

▪ second derivatives are always approximated using central differences

▪ define 1D equidistant grid with Δx the mesh size

▪ the diffusion equation is approximated as follows (ignore boundary points):
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time integration

▪ use the forward Euler scheme to integrate the semi-discrete equation, as follows

▪ this finite difference scheme is called the Forward in Time and Central in Space (FTCS) scheme

▪ the FTCS scheme is called explicit since the new solution depends only on the solutions at the preceding time step

▪ its stencil displays the links between different unknowns and looks like
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Python implementation

▪ The FTCS scheme can be rewritten in the following numerical recipe

▪ in turn, this recipe can be implemented as an algorithm on a computer by means of a high-level computer language

▪ Fortran, C, Matlab, Java, Python

▪ d
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truncation error

▪ the truncation error of the FTCS scheme is given by

▪ use Taylor expansion series to show that

▪ rule: the solution error, defined as                                      , and the truncation error           are of the same order

▪ when both Δt and Δx are reduced by a factor of 2, the solution error will be reduced by a factor of 8 ( = 2 x 4)
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consistency and convergence

▪ a numerical scheme is called consistent if and only if

▪ a numerical scheme is said to be convergent if

▪ a basic rule is the following

16

consistency  +  stability  →  convergence

,
, 0
lim 0t x
x t

 
  →

=

, 0
lim 0n

m
x t

e
  →

=



stability
▪ a numerical scheme is said to be stable if and only if

▪ a common method to analyze the stability of the scheme is based on Fourier decomposition and is 

known as the Von Neumann stability analysis method

▪ this method provides a theoretical basis to proof the correctness of the stability condition

▪ another method that can correctly determine the stability of the scheme is the matrix method

▪ simple but heuristic stability methods are also possible but usually do not prove the correctness of 

the stability

▪ such methods are typically PDE dependent
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stability of FTCS
▪ the true solution of the diffusion equation is always non-negative since

▪ the concentration (e.g., heat, salt) or the associated mass is from physical point of view non-negative

▪ the initial and boundary conditions are for this reason non-negative

▪ the diffusion process is conserving: it does not create nor destroy amount of mass within a given volume – if you 

start with a non-negative amount of mass, you cannot end up with a negative amount

▪ requirement: the numerical solution generated by a numerical scheme must be non-negative, that is,

▪ we derive heuristically the following (prototype) stability limit of the FTCS scheme:

▪ the FTCS scheme is conditionally stable: a choice of Δx will limit the time step!

▪ in practice: Δt is often too small with respect to accuracy!
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the advection equation
▪ we consider the following equation

▪ it describes the propagation of a perturbation (e.g., wave, cloud of pollutant) along the domain x  [0,L]
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the advection equation
▪ we consider the following equation

▪ it describes the propagation of a perturbation (e.g., wave, cloud of pollutant) along the domain x  [0,L] 

while the shape of the perturbation is preserved
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the advection equation
▪ we consider the following equation

▪ it describes the propagation of a perturbation (e.g., wave, cloud of pollutant) along the domain x  [0,L] 

while the shape of the perturbation is preserved

▪ one initial condition (state of c(x) at t = 0 along the entire domain) and one boundary condition at the 

boundary from which the perturbation is being propagated

▪ in case u > 0, we impose the following boundary condition: c(0,t) = f(t) (on west side)

▪ in case u < 0, we impose the following boundary condition: c(L,t) = f(t) (on east side)
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discretization of advection equation
▪ we use backward difference scheme to capture the information upstream properly

▪ central differences does not care about the direction of propagation, which leads to instabilities!

▪ we apply again forward Euler scheme

▪ the resulting scheme is the Forward in Time, Backward in Space (FTBS) scheme

▪ the truncation error of the FTBS scheme is given by

▪ the FTBS scheme is explicit, and its stencil looks like
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the advection-diffusion equation
▪ we consider the following equation in domain 0 ≤ x ≤ 1

▪ the following boundary conditions are provided

▪ c(0,t) = 0 at west side, and

▪ c(1,t) = 1 at east side

▪ the steady-state solution is of the boundary layer type

▪ effects of diffusion are confined in a thin layer                                                                            
(“inner region”) near the east boundary

▪ the rest of the domain (“outer region”) is treated as                                                                                                   
inviscid

▪ the larger the , the thicker is the boundary layer
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discretization of advection-diffusion equation (I)

▪ the FTCS scheme is given by

▪ its truncation error is given by

▪ note: accuracy in time is irrelevant here!

▪ the numerical boundary layer solution                                                                                                      

generated by FTCS may look like
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discretization of advection-diffusion equation (II)

▪ the FTBS scheme is given by (u > 0)

▪ its truncation error is given by

▪ note: time accuracy not relevant!

▪ the numerical boundary layer solution                                                                                                      

generated by FTBS may look like

▪ the numerical boundary layer is thicker, because …

▪ … the upwind scheme produces numerical diffusion!
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numerical diffusion

▪ Q: what is the amount of numerical diffusion produces by the first order upwind scheme?

▪ A: consider the difference between FTBS and FTCS and reformulate it as a discrete diffusion term

▪ the amount of numerical (or artificial) diffusion is given by

▪ numerical boundary layer solution produces by FTBS is rather inaccurate if

24

1 1 1

2

11

2

1 2

2

n n n n n

m mm m

n

mm

n

m

xx x
u u u x
c c c c cc c+ − + −−

 
− −

−−
=

+


−

1

2
a u x = + 

a 



stability of FTBS

▪ reconsider FTBS applied to the advection equation

▪ since the upwind scheme produces numerical diffusion, the FTBS solution must be non-negative(!)

▪ we can derive stability condition(s) for FTBS based on the following requirement

▪ the (prototype) stability condition of the FTBS scheme is given by
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wiggles
▪ central differences applied to the advection term are prone to generate spurious oscillations near steep gradients, 

especially if the mesh is relatively coarse

▪ this is a numerical artefact called wiggles

▪ let’s go back to the advection-diffusion equation and reconsider its approximation by the FTCS scheme

▪ we reconsider the numerical boundary layer solution                                                                          

produces by FTCS but at a coarser grid

▪ the solution now oscillates around the boundary layer

▪ the criterion for preventing wiggles is provided by the                                                                      

mesh-Péclet number and is given by
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wiggles
▪ the usual mechanism to counteract wiggles is numerical diffusion

▪ wiggles can be suppressed by adding artificial diffusion

▪ however, this must be done carefully: not too much, but also not too little

▪ one way to prevent wiggles is to apply the upwind scheme

▪ it usually produces more than enough                                                                                         

numerical diffusion(!)

▪ for instance, we consider the same coarse grid as                                                                                                        

in the previous example (PΔ = 4)

▪ the numerical boundary layer produces by FTBS is

▪ adding                        always reduces the                                                                             

mesh-Péclet number below 2
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instationary advection-diffusion equation

▪ another class of problems is described by an instationary advection-diffusion equation

▪ the propagation of a disturbance (e.g., wave, cloud of pollutant) in which it spreads over a certain distance 

simultaneously

▪ here, discretization of time derivative becomes relevant, including its order of accuracy

▪ during the GA 2.1 another time integration scheme will be dealt with

▪ the second order Crank-Nicolson scheme (or trapezoidal rule)

▪ more accurate than forward and backward Euler schemes

28

0x = x L=



key points

▪ advection dominated problems require different numerical treatment than diffusion dominated problems

▪ central differences is second order accurate but is prone to generate wiggles

▪ first order upwind scheme produces numerical diffusion and diminishes spurious oscillations

▪ explicit schemes are conditionally stable (or occasionally unconditionally unstable!)

▪ prototype stability limit for diffusion problems:

▪ prototype stability limit for advection problems: via Courant number,

▪ wiggles in solution to advection-diffusion equation can be avoided if mesh-Péclet number is less than or equal 2 
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