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Course evaluation

Please help us evaluate and improve MUDE with your feedback!
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6. Observation theory

6.1. Introduction
6.2. Least-squares estimation

6.3. Weighted least-squares
estimation

6.4. Best linear unbiased
estimation

6.5. Precision and confidence
intervals

6.6. Maximum Likelihood

6.7. Non-linear least-squares
estimation

6.8. Model testing

6.9. Hypothesis testing for
Sensing and Monitoring

6.10. Notation and formulas

6.7. Non-linear least-squares
estimation

Notebook Gauss-Newton
iteration for GNSS Trilateration

6.8. Model testing

6.9. Hypothesis testing for

Sensing and Monitoring

Notebook exercise: which
melting model is better?

Notebook exercises: is my null
hypothesis good enough?




Review
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4 )
Functional model: IE(Y) —A-x

Estimators - overview Stochastic model: D(Y') = Xy
(S J

Weighted Least-Squares estimation : minimizing weighted sum of squared errors

allows to give different weights to observations

X = (ATWA)IATW .Y

Best Linear Unbiased estimation ‘min (t'ra,ce(EX)) (best), X =LT .Y (linear), IE(X') = x (unbiased)

X = (ATSy'A) T ATYS Y

Maximum Likelihood estimation : most likely x for given vy,
for normally distributed data same as BLUE

Maximum likelihood estimation is an important
method, also for machine learning (Q2), and is

/f included as reference material
TU Delft (will not be on exam or in assignments)



Results from notebooks

= Underfitting: model too simplistic, does not capture the real signal

= Overfitting: nearly perfect fit, but no physical interpretation
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Results from notebooks

= Underfitting: model too simplistic, does not capture the real signal
= Overfitting: nearly perfect fit, but no physical interpretation - very risky if you use model for
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Best linear unbiased estimator = best weighted least squares

estimator
Weight matrix is inverse covariance matrix:

Makes sense: high precision - small variance - large weight
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/Y = A -x+ ¢
Question that may have popped up: DY)=Xy =X,
o

Where does Xy come from?
—> Calibration:

» Repeated measurements

» Calculate standard deviation

Usually observables are assumed to be independent, since the random errors are independent
(error of observation Y; does not depend on the error of observation Y;

When would observable be dependent?

- due to signal processing in sensor (often when sampling rate is too high)
- if we use differential observables

- if we apply a common correction to our observations which is stochastic
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Open questions

= (How to come up with a model?)
= What if my model is non-linear?
= Does my model really fit?

= Which models fits best?

]
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What if my observation equations are non-linear?

4
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Observed: ground water level rise due to rainfal

t—1
E(Y)=p-r(1—exp (-2
a

N— —,—,—,—,—,_,_—
S(t—to)
» Known parameter:
» p [m]: constant water inflow during rain event
» Unknown parameters:
» scaling parameter a [days] (memory of system),

> response r [m/m] of the aquifer depending on the amount of rainfall

]
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Volcano deformation rates at known locations (x;, y;)

E(Y;) =

Unknown parameters:
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Linearized observation equation using 1st order Taylor approximation
1 observation 1 unknown

y = q(x)+e = q(z)) + 0zq(x)0)) (T — zj0)) +¢
for now: omit € from equations

initial guess

Ay =y — q(xj) =~ 09(xj0))(x — z[0))
A

observed-minus-
computed

]
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Input:
- observation y
- Initial guess x|

A291[0] =Y — CI(37[0]) ~ 3xQ(5U[0])($[1] — l‘[o])

\ -/

Y

ASE[O]
slope of tangent

q(zj0))

5
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Input:
- observation y
- Initial guess x|

A291[0] =Y — CI(37[0]) ~ 3xQ(fU[0])(fU[1] — l‘[o])

\ -/

Y

ASE[O]
slope of tangent

q(zj0))
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Input:
- observation y
- New guess xqj

Aypn =y — q(zp)) = 3:::(1(3?[1])@[2] — 33[1]2

v A

Aa:[l]

- Gauss-Newton iteration

Continue until Ax;) is very small

el el

] _
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Linearized observation equation using 1st order Taylor approximation
1 observation n unknowns

Ay =y — q(xp)) = 0xq(xp)) (X — x[3))

EESEl ~——
Axi]
_331 — L1,[4] |
L2 — L2 [q]
= [0 q(xp)  Owoq(xpy) -+ Osna(xp)]
| Ln ™ L, 7]

i is the iteration index

]
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Non-linear functional model

11:1 [ q1(x) |
IE( :2 ) _ q2 (X)
Yo g (X) |

Linearized functional model

(AY] | O, q1(X(i)  Owoq1 (X)) -+ O, qu(xpp) | [Azr
E( AY; ) Oz,G2(xii)  OzaGa(Xp) o+ 02,G2(xp) | | Aze
AYm_ [i] O G (X[i])  Ooym(X[)) -+ Oz, tm(xp))] [AZn (i
4 \ Y J
TUDelft

Jacobian < takes the role of design matrix A



Gauss-Newton iteration

Start with initial guess xq;, and start iteration with i = 0
1. Calculate observed-minus-computed Ayy;

2. Determine the Jacobian

3. Estimate AXy;; by applying BLUE

4. New guess X111 = AR+ Xpg

WHEN TO STOP?

AY) O, q1 (X)) Onpqi(Xpy) -+ Or,qi(xp) | [Az:
E( AY; ) 01,92(X[5))  Opq2(xp) -+ Oz,q2(xp) | | Az
| AYr_ [4] |0z, qm (X[i]) Oy m (X[i]) oo Oz, Qm (X[i])_ |Azp,_ (4]
4 \ Y J
TUDelft

Jacobian < takes the role of design matrix A



Convergence
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Volcano deformation rates at known locations (x;, y;)

E(Y;) =

0.73AV .
Td?

Unknown parameters:

Observed deformations [mm/yr]
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Volcano deformation — precision of estimated parameters

observed deformations at (x;, y;) as function of volume change, depth, horiz. position of centre

E(Y) = SO0 (14 (@ — 2" + (s~ 0)%)
‘AV]  [-552352.169 m3]

d | | 3562.319m

z. | | 27528.535 m
9s | | 23540.619m
_ _ _ _ seems large, but look at

N 1582.769 ’m3 units, and look at size

0; B 8.986 m compared to estimate !

O3, 8.238 m
og, | | 7239m
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Gauss-Newton iteration

Start with initial guess x;

1. Calculate observed-minus-computed Ayy;

New guess X1

a &> &b

s E(
TUDelft

Determine the Jacobian

AYy
AY;

AYn,

Estimate AXp;) by applying BLUE
= AXp+ X))

[¢]

85131 q1 (X[Z])
85131 q2 (X[Z])

I and start iteration withi = 0

8$2 qi1 (X[’L])
8$2 q2 (X[’L])

Oy @ (X[)) Oy G (X[3))

Stop criterion

AX[Z]

. A:?c[,;] < small value

an estimated parameter with small
variance should have a relatively
small deviation compared to a
parameter with large variance

Oz, q1 (X[i])

Oz, q2 (X[i])

8mn dm (X[z] )_

If stop criterion is met: set X = xj;, 1 and break, otherwise set i: =i + 1 and go to step 1

ACCl
ACCQ

Az,




Is it a good fit?
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Sensing and observation theory - why

Needed for monitoring and prediction

e.g., natural processes, human-induced deformations, structural health, climate & environment, geo-
energy and geo-resources, ...

» Process measurements (= observations) to estimate parameters of interest

» In order to use estimation results for further analysis and interpretations (eventually to make
decisions)

= uncertainty quantification

= detection of errors in data (outliers, systematic biases)
+ correction / adaption for these errors

= model validation
1 » detect model misspecifications
TU De|ft * multiple candidate models = decide which one is best



Example: outlier

3
1 outlier may have large impact

_,_, on estimated height
<
D
)
<

M - . x__ affected by outlier

b — -— x hot affected by outlier
x x
time
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Example: model misspecification

Wrong model - large residuals
(difference observations and fitted model)

height
height

location location

TU Delft



Statistical hypothesis testing

—>test for compliance of model and data

Two competing hypothesis:
- Null hypothesis (nominal model): HO
- Alternative hypothesis: Ha,

Null hypothesis presumed to be ‘true’
until data provide convincing evidence against it

equivalent to:
“ the defendant is presumed to be innocent until proven guilty ”

]
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Group assignment

ot
d:dg+vt+Asin(% — ),

27t

d= dg + v (]. — €XPp (;t)) —I—ASIH(% i 96),

Apply non-linear least-squares
How to decide between the two models?

]
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Enjoy...
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