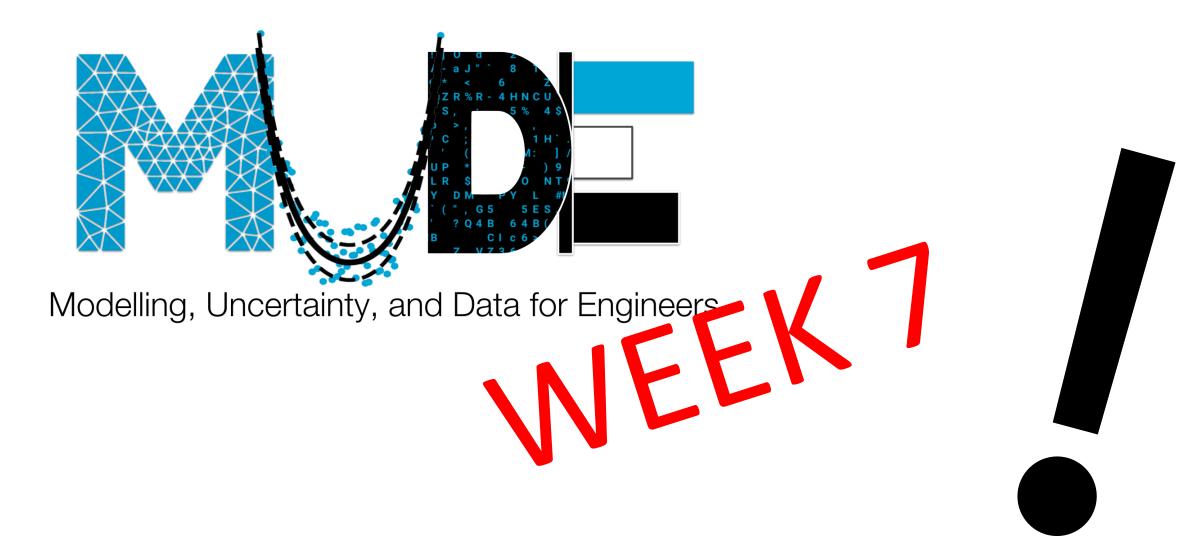
Welcome to...



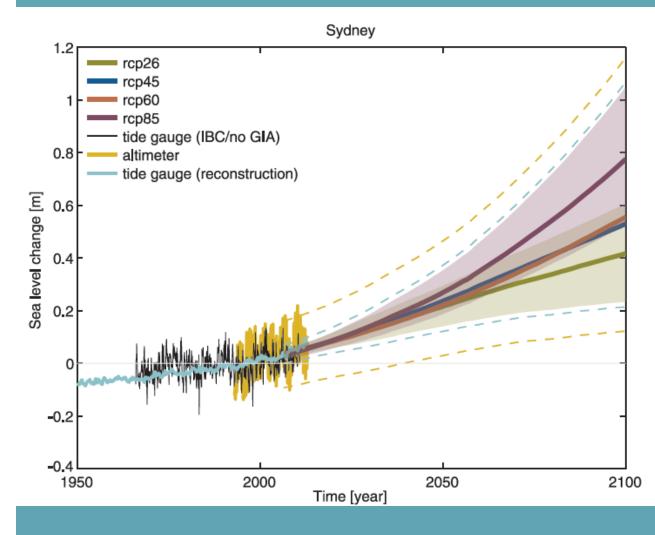
Modelling, Uncertainty and Data for Engineers (MUDE)

Week 1.7-1.8: Sensing and Observation Theory
Sandra Verhagen

Sensing and observation theory

- Science and engineering: need observations!
- Observations → parameters of interest?
- Estimation results: interpretation & uncertainty
- → Input for other engineers, decision makers, ...

https://research.csiro.au/slrwavescoast/se a-level/future-sea-level-changes/



Do we need higher dikes?

Monitoring and Sensing: why?

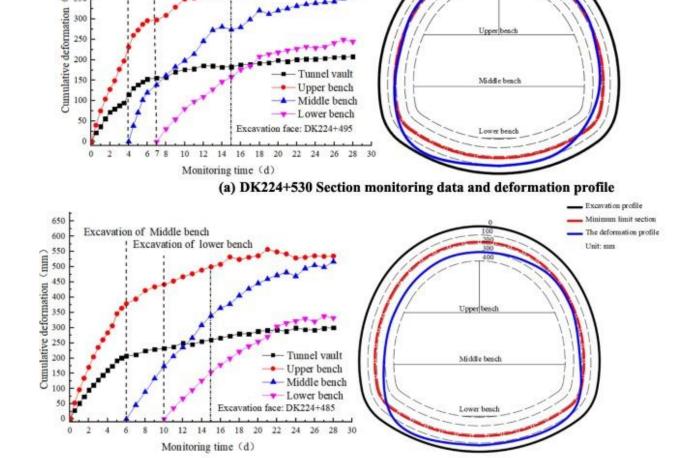
What sensor / observation types are used in your discipline?

Sensor/observation types

- camera: visible, IR, UV, hyperspectral
- radar
- radio signals
- rain gauges
- tide gauges
- stress / strain sensors
- acoustic sensors
- accelerometers
- gyroscopes
- temperature
- pressure

Sensing and observation theory: applications

- Sea level rise
- Subsidence / uplift
- Air quality modelling
- Settlement of soils
- Tunnel deformation
- Bridge motions
- Traffic flow rate
- Water vapor content
- Ground water level



Excavation of Middle bench

Excavation of lower bench

(b) DK224+520 Section monitoring data and deformation profile

Input data Y

model & estimate parameters of interest x

Output data

$$\hat{X} = q(Y)$$

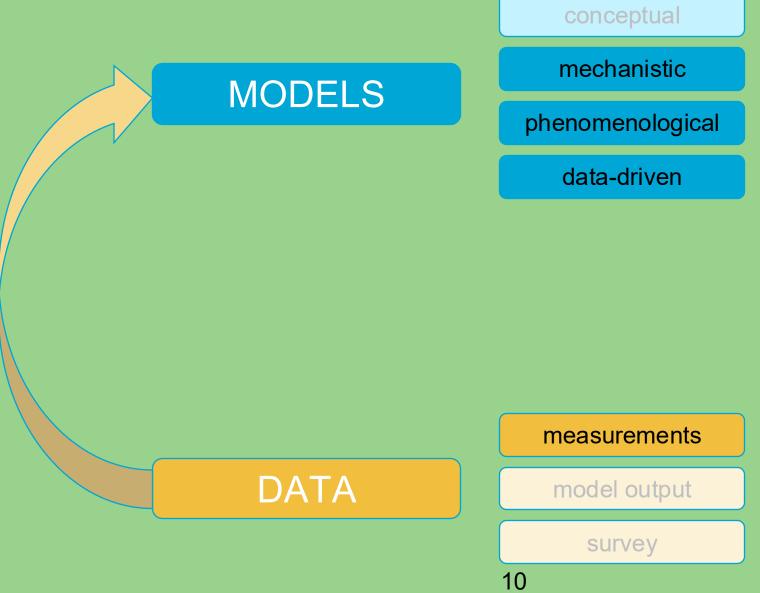
measurements

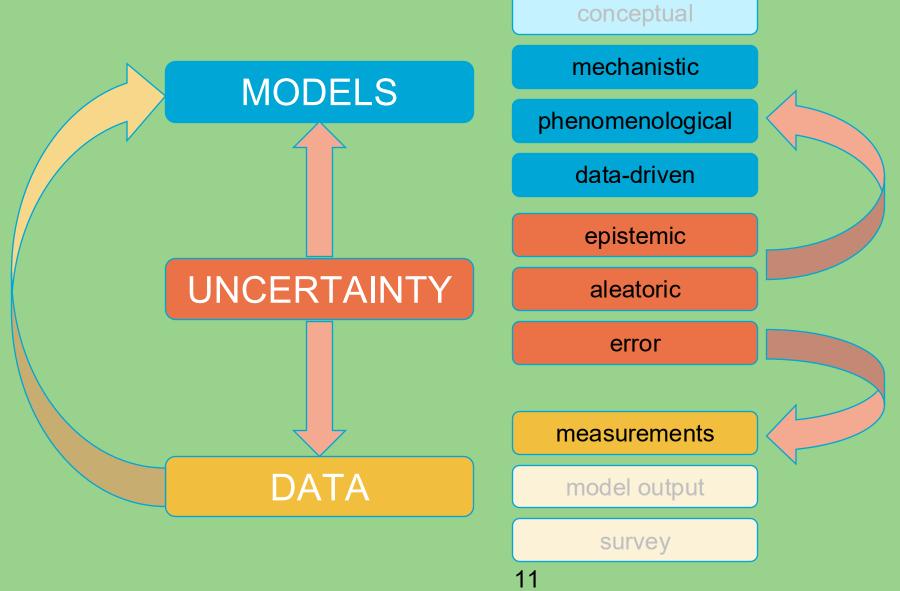
model output

survey

9

DATA

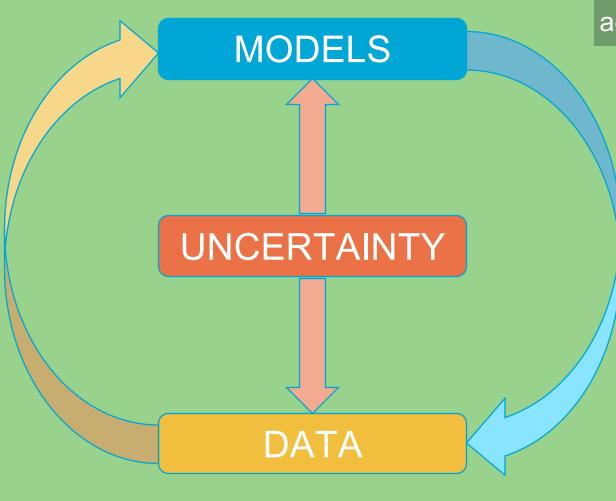




What sensor / observation types are used in your discipline?

Sensor/observation types

- camera: visible, IR, UV, hyperspectral
- radar
- radio signals
- rain gauges
- tide gauges
- stress / strain sensors
- acoustic sensors
- accelerometers
- gyroscopes
- temperature
- pressure



This week is about:

estimating model parameters using data (usually measurements), taking into account uncertainty in data and models

measurements

model output

Input data Y

model & estimate parameters of interest x

Output data $\hat{X} = q(Y)$

You wil need ...

- ... a model to describe relation between Y and x
- ... to select and apply an appropriate estimation method
- ... to apply uncertainty propagation to assess the precision of \hat{X}
- ... to apply tests to assess validity of your model

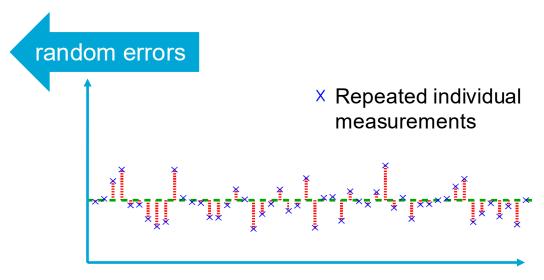
Input data Y

model & estimate parameters of interest x

Output data $\hat{X} = q(Y)$

You wil need ...

- ... a model to describe relation between Y and x
- ... to select and apply an appropriate estimation method
- ... to apply uncertainty propagation to assess the precision of \hat{X}
- ... to apply tests to assess validity of your model



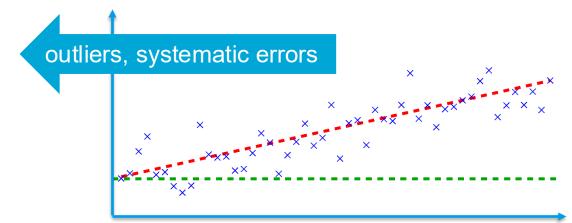
Input data Y

estimate parameters of interest *x*

Output data $\hat{X} = q(Y)$

You wil need ...

- ... a model to describe relation between Y and x
- ... to select and apply an appropriate estimation method
- ... to apply uncertainty propagation to assess the precision of \widehat{X}
- ... to apply tests to assess validity of your model
 - to account for errors in data



Input data Y

estimate parameters of interest *x*

Output data $\hat{X} = q(Y)$

You wil need ...

... a model to describe relation between Y and x

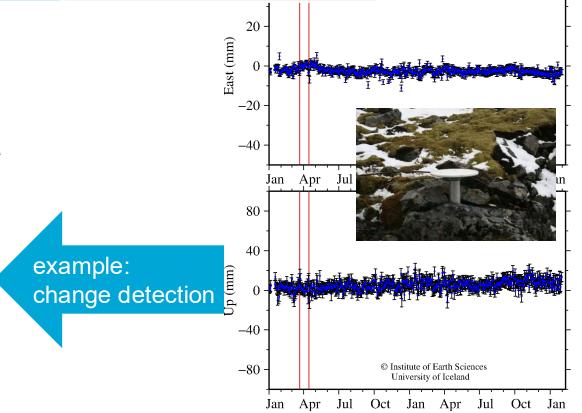
... to select and apply an appropriate estimation method

- ... to apply uncertainty propagation to assess the precision of \widehat{X}

... to apply tests to assess validity of our model

to account for errors in data

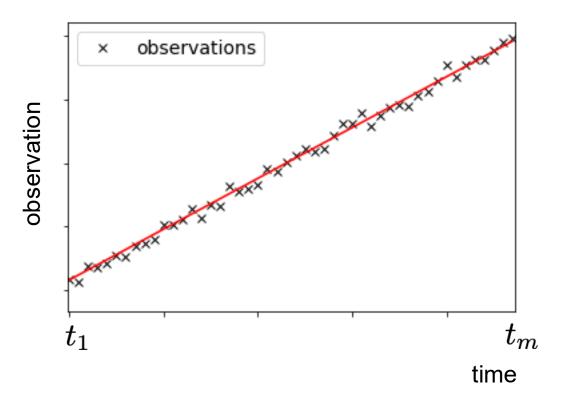
to choose best model from different candidates



Examples

Linear trend model:

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_m \end{bmatrix} = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_m \end{bmatrix}$$
$$= Ax + \epsilon$$



Unknowns (model parameters):

 x_1 initial value at t = 0

 x_2 slope

Model formulation

Observable Y : stochastic quantity (due to random errors)

→ an observable ("to be observed quantity") has a certain probability distribution

Observation vector y : realization of Y

→ the measured value(s)

Parameter vector x
 deterministic, but unknown

- Random errors ϵ : stochastic with $\epsilon \sim N(0,\Sigma_\epsilon)$

Functional model (linear case) : $Y = A \cdot {
m x} + \epsilon$ or $\mathbb{E}(Y) = A \cdot {
m x}$

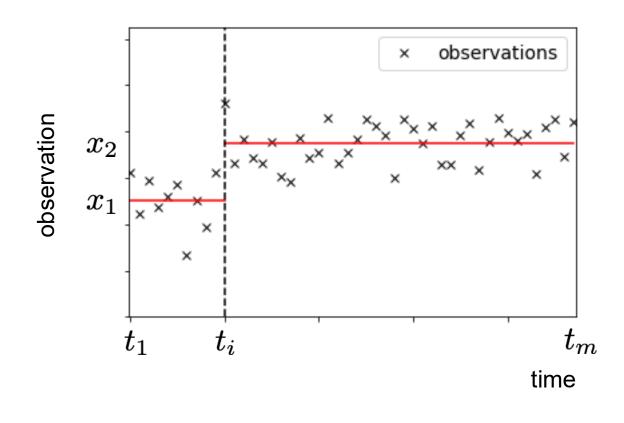
What is the distribution of *Y*?

Design matrix A : describes functional relationship between Y and x

Examples

Step model

$$\mathbb{E}(\begin{bmatrix} Y_1 \\ \vdots \\ Y_{i-1} \\ Y_i \\ \vdots \\ Y_m \end{bmatrix}) = \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\mathbf{X}}$$



Part 7: Sensing and Observation

The distance x between a fixed benchmark and a moving benchmark on a landslide is measured at times t = 0, 2, 4, 6, 8, 10 months. The observations are shown in the figure.

It is assumed that normally the distance is changing at a constant rate. It is known, however, that at t=5 months there was a sudden slip of the landslide, causing an additional change in distance at that time.

x(t) [mm]

 x_0

10

t [months]

Observations y collected, we have a functional model A, how to estimate x?

Observations y collected, we know A, how to estimate x?

for now we ignore the random errors

A linear system
$$y = A \cdot x$$

We will consider overdetermined systems with $\ rank({
m A})=n < m$

Hence we have more observations than unknowns

Redundancy =
$$m-n$$

Example of overdetermined system with rank(A) = n

$$\underbrace{\begin{bmatrix} 3 \\ 5 \\ 6 \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\mathbf{x}}$$

→ no solution

$$\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
y

$$\Rightarrow \hat{\mathbf{x}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

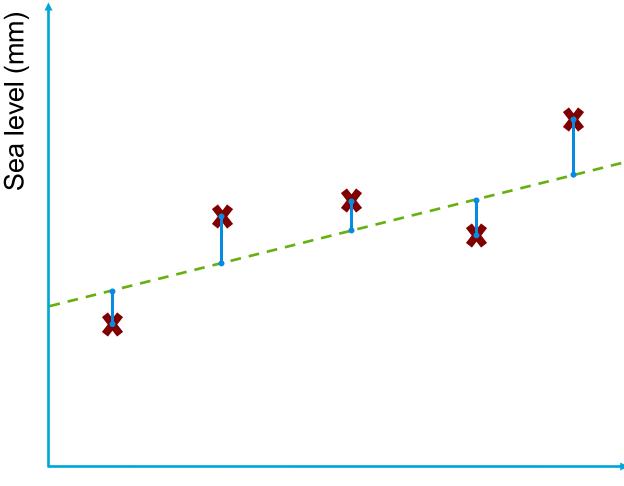
→ in case of perfect measurements, i.e., errors equal to 0

Overdetermined system

Account for random errors, otherwise generally no solution

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ 1 & t_3 \\ 1 & t_4 \\ 1 & t_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \end{bmatrix}$$

unknowns: 2 parameters + 5 errors but only 5 observations... many possible solutions



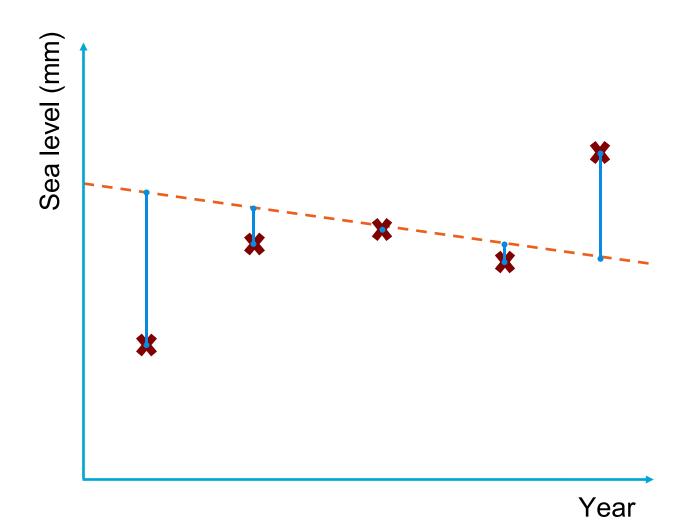
Year

Overdetermined system

Account for random errors, otherwise generally no solution

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ 1 & t_3 \\ 1 & t_4 \\ 1 & t_5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \end{bmatrix}$$

unknowns: 2 parameters + 5 errors but only 5 observations... many possible solutions



Least squares criterion?

Quiz: what is the least-squares criterion?

minimize the sum of the squared errors

Least-squares principle

• Linear model: $y = Ax + \epsilon$

• Objective:
$$\min_{\mathbf{x}} (\epsilon^T \epsilon) = \min_{\mathbf{x}} (\mathbf{y} - \mathbf{A}\mathbf{x})^T (\mathbf{y} - \mathbf{A}\mathbf{x})$$

Minimize the sum of squared errors (i.e., optimization problem)

- Gradient (first-order partial derivatives) = 0
- Hessian (matrix with second-order partial derivatives) > 0

• Solution
$$\hat{\mathbf{x}} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \cdot \mathbf{y}$$

Least-squares solution

Functional model:

$$y = Ax + \epsilon$$

Least squares solution

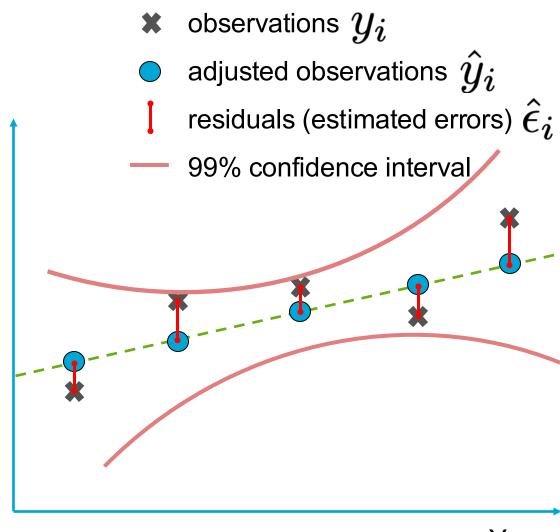
$$\hat{\mathbf{x}} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \cdot \mathbf{y}$$

Adjusted (predicted) observations:

$$\hat{y} = A\hat{x}$$

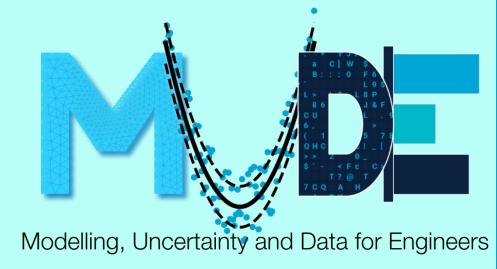
Residuals (estimated errors):

$$\hat{\epsilon} = y - \hat{y}$$



Year

Properties of Least-Squares estimator



Estimate vs. Estimator

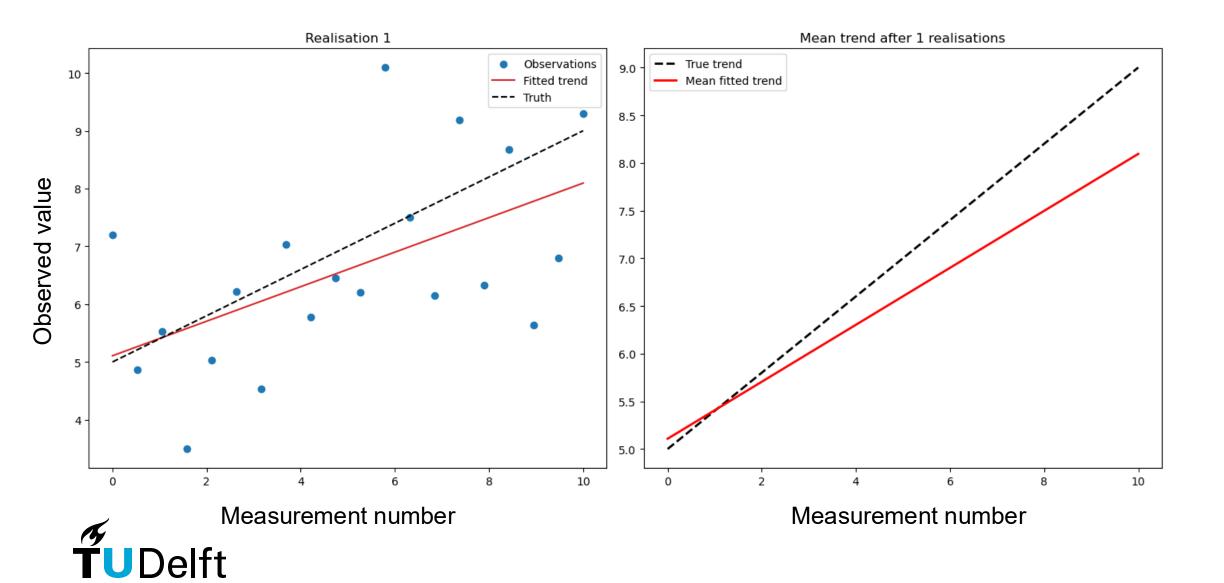
$$\hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \cdot \mathbf{y}$$

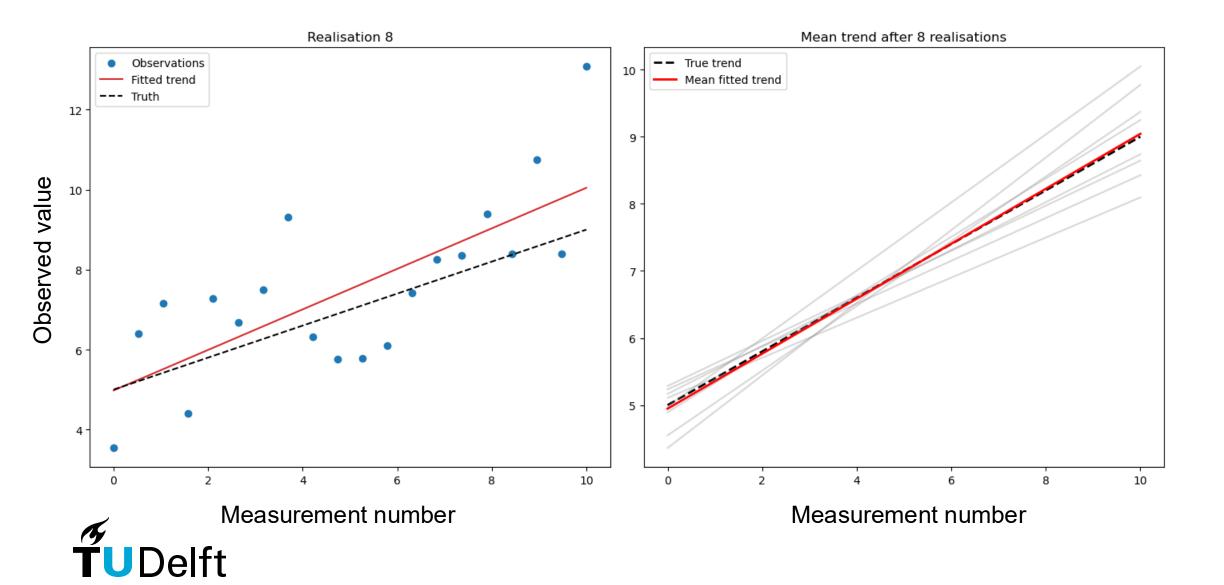
one realization of \widehat{X} (the estimated values)

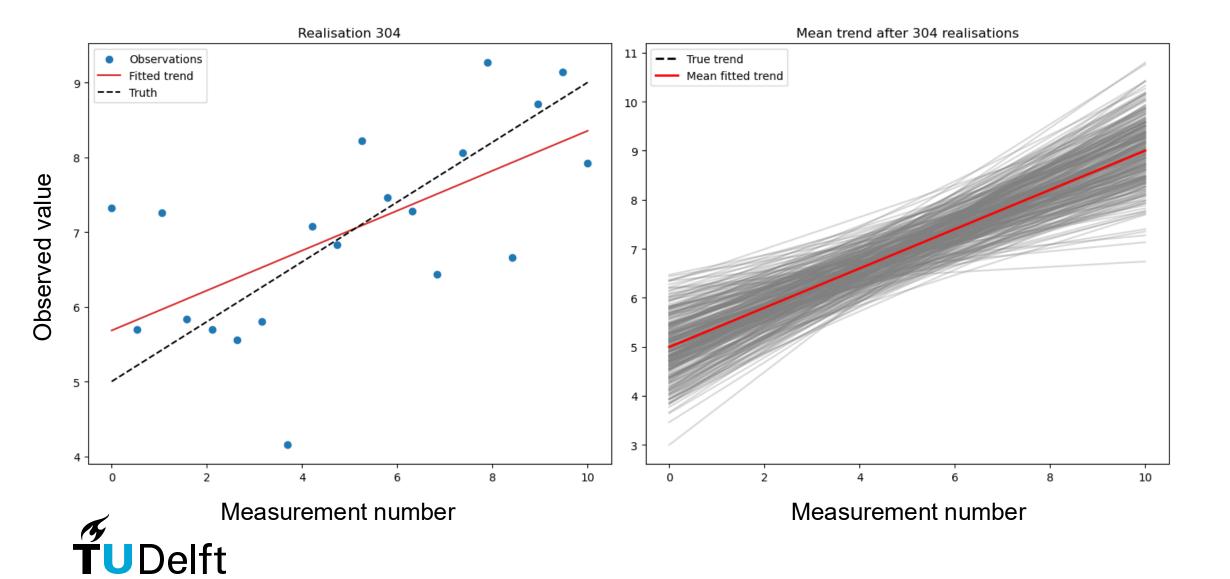
one realization of *Y* (the actually observed values)

$$\hat{X} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A} \cdot Y$$

- If you repeat the measurements, you will get a different realization (due to random errors)
 → estimated values will be different
- If you repeat many times → you will see distribution of estimated parameters and fitted model







Estimate vs. Estimator

$$\hat{\mathbf{x}} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \cdot \mathbf{y}$$

one realization of \widehat{X} (the estimated values)

one realization of *Y* (the actually observed values)

$$\hat{X} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A} \cdot Y$$

- If you repeat the measurements, you will get a different realization (due to random errors)
 → estimated values will be different
- If you repeat many times → you will see distribution of estimated parameters and fitted model
- We can also determine the expectation and covariance matrix by applying the propagation laws you learned last week (Section 5.3)

From Section 5.3 Linear propagation of mean and covariance

$$\mathbf{X} = egin{bmatrix} X_1 \ X_2 \ dots \ X_m \end{bmatrix} = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} egin{bmatrix} Y_1 \ Y_2 \ dots \ Y_n \end{bmatrix} + egin{bmatrix} c_1 \ c_2 \ dots \ c_m \end{bmatrix} = \mathbf{AY} + \mathbf{c}$$

with known $\mathbb{E}(\mathbf{Y})$ and covariance matrix $\mathbf{\Sigma}_Y$, and \mathbf{c} a vector with deterministic variables.

The linear propagation laws of the mean and covariance matrix are given by

$$\mathbb{E}(\mathbf{X}) = \mathbf{A}\mathbb{E}(\mathbf{Y}) + \mathbf{c}$$

$$\mathbf{\Sigma}_X = \mathbf{A}\mathbf{\Sigma}_Y \mathbf{A}^T$$

Applying the propagation laws...

$$\hat{X} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A} \cdot Y$$
 \mathbf{L}^T

in Section 6.10 Notation and formulas Linear propagation laws if $\hat{X} = \mathbf{L}^{\mathrm{T}} Y$

Propagation law of the	Formula
mean	$\mathbb{E}(\hat{X}) = \mathrm{L}^{\mathrm{T}}\mathbb{E}(Y)$
covariance matrix	$\Sigma_{\hat{X}} = \mathrm{L}^{\mathrm{T}}\Sigma_{Y}\mathrm{L}$

Applying the propagation laws...

$$\hat{X} = (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}\cdot Y$$
 \mathbf{L}^T

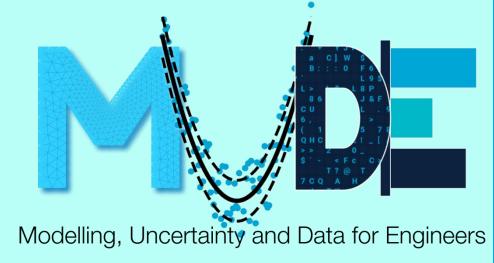
= linear estimator

$$\mathbb{E}(\hat{X}) = (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{A}\mathbf{x} = \mathbf{x}$$
 = unbiased estimator

expectation = true value

Is least-squares the best way to estimate the parameters (= to fit a model to data)?

Weighted Least-Squares estimation



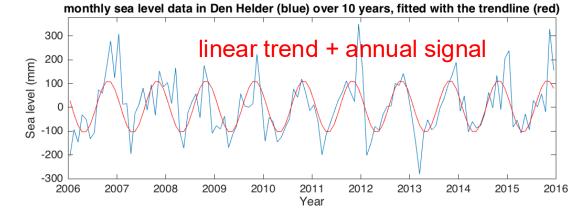
Least-squares...

• Linear model:
$$y = Ax + \epsilon$$

Objective
$$\min_{\mathbf{x}} (\epsilon^T \epsilon) = \min_{\mathbf{x}} (\mathbf{y} - \mathbf{A}\mathbf{x})^T (\mathbf{y} - \mathbf{A}\mathbf{x})$$

Solution:
$$\hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \cdot \mathbf{y}$$

- ... treats all observations equally
- But what if observations are collected with different sensors, with different measurement precision?
 - only use the observations from the best one?
 - give different weights to the observations?



Least-squares...

- Linear model: $y = Ax + \epsilon$
- Introduce a weight matrix W

- Objective: $\min_{\mathbf{x}}(\epsilon^T W \epsilon)$
- For example with a diagonal weight matrix:

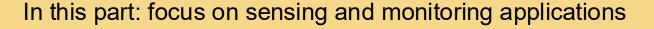
$$\epsilon^T W \epsilon = \begin{bmatrix} \epsilon_1 & \epsilon_2 & \cdots & \epsilon_m \end{bmatrix} \begin{bmatrix} W_{11} & & & O \\ & W_{22} & & \\ & & \ddots & \\ O & & & W_{mm} \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_m \end{bmatrix} = \sum_{i=1}^m W_{ii} \cdot \epsilon_i^2$$

Keep the application in mind!

Decisions to be made based on monitoring and sensing:

- can we safely continue with gas extraction / water injection or extraction / CO2 sequestration?
- do we need to construct higher dikes based on sea level rise predictions / observed deformations?
- do we need to evacuate a region due to risk of a landslide, volcano eruption, tsunami, ...?
- is railway maintenance needed?
- is a safe underkeel clearance of ships approaching Rotterdam guaranteed?
- are motions of bridge within safety margins?
- ... (etcetera etcetera etcetera)

Need proper data processing and quality assessment of the results



Estimation principles also needed for model verification and validation, regression analysis, machine learning