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Week 1.7-1.8 : Sensing and Observation Theory

Sandra Verhagen
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Sensing and observation
theory

= Science and engineering: need observations!
= Observations - parameters of interest?
= Estimation results: interpretation & uncertainty

—> Input for other engineers, decision makers, ...
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Monitoring and Sensing: why?
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What sensor / observation types are used in
your discipline?
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Sensor/observation types

= camera: visible, IR, UV, hyperspectral
= radar
= radio signals
= rain gauges
tide gauges
stress / strain sensors
acoustic sensors
accelerometers
gyroscopes
temperature

pressure
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Excavation of Middle bench
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What sensor / observation types are used in
your discipline?
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Sensor/observation types

= camera: visible, IR, UV, hyperspectral
= radar
= radio signals
= rain gauges
tide gauges
stress / strain sensors
acoustic sensors
accelerometers
gyroscopes
temperature

pressure

'4
TUDelft 13



This week is about:
estimating model parameters using

data (usually measurements), taking into

account Uncertainty in data and models

UNCERTAINTY

measurements

model output
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Ingredients

model &

estimate
parameters of

Interest x

Input data Y

You wil need ...
.. a model to describe relation between Y and x
.. to select and apply an appropriate estimation method
.. to apply uncertainty propagation to assess the precision of X

.. to apply tests to assess validity of your model
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Output data
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Ingredients

model &

estimate Output data
parameters of X = q)

Interest x

Input data Y

You wil need ...

= ... a model to describe relation between Y and x

= ... to select and apply an appropriate estimation method

= ... to apply uncertainty propagation to assess the precision of X random errors

= ... to apply tests to assess validity of your model X Repeated individual
measurements
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Ingredients

estimate
Input data Y parameters
of interest x

Output data

X = q(Y)

You wil need ...
... a model to describe relation between Y and x
... to select and apply an appropriate estimation method
... to apply uncertainty propagation to assess the precision of X
... to apply tests to assess validity of your model

= to account for errors in data
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Ingredients

estimate

parameters
of interest x

You wil need ...

g
= ... a model to describe relation between Y and x §
= ... to select and apply an appropriate estimation method
- ... to apply uncertainty propagation to assess the precision of X
= ... to apply tests to assess validity of our model

= to account for errors in data

= to choose best model from different candidates example:

change detection
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Examples

Linear trend model:
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= Ax + €

observation

%  observations

time

Unknowns (model parameters):

I1 initial valueatt =0

L2 slope
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Model formulation

Observable Y . stochastic quantity (due to random errors)
- an observable (“to be observed quantity”) has a certain probability distribution
Observation vector y . realization of Y
- the measured value(s)
Parameter vector x . deterministic, but unknown
Random errors ¢ . stochastic with € v N(O, Ee)

Functional model (linear case) : Y p— A - X —|— € or E(Y) — A - X

X . e .
mox What is the distribution of Y?
Design matrix A . describes functional relationship between Y and x
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Part 7: Sensing and Observation
The distance = between a fixed benchmark and a moving benchmark on a landslide is measured at
timest =0,2,4,6,8,10 months. The observations are shown in the figure.

It is assumed that normally the distance is changing at a constant rate. It is known, however, that

at t = 5 months there was a sudden slip of the landslide, causing an additional change in distance at that
time.

K

X(t) [mm]
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Observations y collected,
we have a functional model A,
how to estimate x?
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Observations y collected, we know A, how to estimate x?

for now we ignore the random errors

A linear system y = A « X
m X mn

/We will consider overdetermined systems with 'r'a'n,k(A) —n<<m h
Hence we have more observations than unknowns
Redundanc = MM — N

N y Y,
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Example of overdetermined system with rank(A) = n

3 1 1] ¢ - 4 1 1] -
51 = |1 2 il 50 = |1 2 il
2 2

_6_ _1 3_'\’:/ _6_ _1 3_'\’_‘/
N = N =
y A y A

| ¥ = _3-
- no solution - — _1—

- in case of perfect measurements,

-i-’;u Delft l.e., errors equal to O



Overdetermined system

Account for random errors,
otherwise generally no solution

Y1 1 1 €1
Y2 | €2
L1
y3| = |1 t3 [ le + | €3
Y4 1 4 €4
Y5 1 5 €5

unknowns : 2 parameters + 5 errors
but only 5 observations...
many possible solutions
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Overdetermined system

Account for random errors,
otherwise generally no solution

Y1 1 1 €1

Y2 1 to €2
L1

y3| = |1 t3 [ N ] + | €3

Y4 1 14 2 €4

Y5 1 5 €5

unknowns : 2 parameters + 5 errors
but only 5 observations...
many possible solutions

'i";u Delft Least squares criterion?

Sea level (mm)
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Quiz: what 1s the least-squares criterion?

minimize the sum of the squared errors

]
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Least-squares principle

- Linear model: y = Ax —+ €

. objective: ~ min(e’ €) = min(y — Ax)? (y — Ax)

X

Minimize the sum of squared errors (i.e., optimization problem)
= Gradient (first-order partial derivatives) =0

= Hessian (matrix with second-order partial derivatives) > 0
n —1

- Solution X = (ATA) AT Ly

]
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Least-squares solution %X observations Y;
Functional model: @ adjusted observations Qz
y = AX _|_ € N I residuals (estimated errors) €,
99% confidence interval
Least squares solution
A i !
k= (ATA) AT .y ye

Adjusted (predicted) observations: o
y = A% x

Residuals (estimated errors):

A

E=y—Y¥

Year
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Properties of Least-Squares estimator

oL/
Modelling, Uncertainty and Data for Engineers



Estimate vs. Estimator

x=

one realization of X
(the estimated values)

(ATA) AT .y

N\

one realization of Y
(the actually observed values)

i,

X

(ATA) A .Y

= |If you repeat the measurements, you will get a different realization (due to random errors)
—> estimated values will be different

= If you repeat many times - you will see distribution of estimated parameters and fitted model

]
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Observed value

Realisation 1

10 - ¢

® Observations
— Fitted trend
=== Truth

]
TUDelft

Measurement number

8 10

Mean trend after 1 realisations

9.0 1

8.5 7

8.0 1

7.5 7

7.0

6.5 7

6.0 1

5.5 1

5.0

== True trend ’
= Mean fitted trend #

Measurement number
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Observed value

Realisation 8

Mean trend after 8 realisations

® Observations ® 04" True trend
— Fitted trend = Mean fitted trend
=== Truth
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Observed value

Realisation 304

Mean trend after 304 realisations
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Estimate vs. Estimator

i,

5= (ATA) ™ AT X X =(ATA) A Y

one realization of X one realization of Y
(the estimated values) (the actually observed values)

= |If you repeat the measurements, you will get a different realization (due to random errors)
—> estimated values will be different

= If you repeat many times - you will see distribution of estimated parameters and fitted model

= We can also determine the expectation and covariance matrix by applying the propagation laws
ou learned last week (Section 5.3)

TUDelft

36



From Section 5.3 Linear propagation of mean and covariance

X1 a1 a2 ... a| (Y1 C1
X9 a1 a2 ... as| |Ys Co
X=1.1=1". . . . |+ .| =AY +c
_X m_ Am1 Am2 eee Qmp _Yn_  Cm_

with known E(Y') and covariance matrix Xy, and ¢ a vector with deterministic variables.

The linear propagation laws of the mean and covariance matrix are given by

E(X) = AE(Y) +c

Sy=AXyAL



Applying the propagation laws...

X=(ATA) A Y
\ }
|
LT
in Section 6.10 Notation and formulas
Linear propagation laws if X = LY

Propagation law of the ... Formula

... mean E(X) = LTE(Y)

... covariance matrix Y, =L"SyL



Applying the propagation laws...

j{ - (ATA)—lA Y = linear estimator
\ }

[T

E(j() — (ATA)_IATAX — X = unbiased estimator

expectation = true value

]
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Is least-squares the best way to estimate the
parameters
(= to fit a model to data)?
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Weighted Least-Squares estimation

oL/
Modelling, Uncertainty and Data for Engineers



Least-squares...
y=Ax+¢€

Linear model:

Obijective

Solution:

... treats all observations equally

But what if observations are collected with different sensors, with different measurement precision?

» only use the observations from the best one?

» give different weights to the observations?

]
TUDelft

)

Sea level (mm
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min(e’ €) = min(y — Ax)? (y — Ax)
= (ATA) AT .y
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Least-squares...

Linear model: y = Ax + €

Introduce a weight matrix W

Obijective: min(eTWG)
X

For example with a diagonal weight matrix:

Wi O €1
Woo €2 n
eTWez[el € €m) : | = E Wi €
' : i=1
| O Wmm | |€m]

’f An observation with a larger weight is supposed to have a smaller error;
TU Delft this is considered in this minimization problem



Keep the application in mind!

Decisions to be made based on monitoring and sensing:

- can we safely continue with gas extraction / water injection or extraction / CO2 sequestration?

- do we need to construct higher dikes based on sea level rise predictions / observed deformations?
- do we need to evacuate a region due to risk of a landslide, volcano eruption, tsunami, ...?

- is railway maintenance needed?

- is a safe underkeel clearance of ships approaching Rotterdam guaranteed?

- are motions of bridge within safety margins?

... (etcetera etcetera etcetera)

Need proper data processing and quality assessment of the results

In this part: focus on sensing and monitoring applications

1(!U D I f Estimation principles also needed for model verification and validation,
eltt regression analysis, machine learning 44
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