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Week 1.7-1.8 : Sensing and Observation Theory

Sandra Verhagen
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Sensing and observation
theory

= Science and engineering: need observations!
= Observations - parameters of interest?
= Estimation results: interpretation & uncertainty

—> Input for other engineers, decision makers, ...
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Monitoring and Sensing: why?
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What sensor / observation types are used in
your discipline?
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Sensor/observation types

= camera: visible, IR, UV, hyperspectral
= radar
= radio signals
= rain gauges
tide gauges
stress / strain sensors
acoustic sensors
accelerometers
gyroscopes
temperature

pressure
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Excavation of Middle bench
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What sensor / observation types are used in
your discipline?
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Sensor/observation types

= camera: visible, IR, UV, hyperspectral
= radar
= radio signals
= rain gauges
tide gauges
stress / strain sensors
acoustic sensors
accelerometers
gyroscopes
temperature

pressure

'4
TUDelft 13



This week is about:
estimating model parameters using

data (usually measurements), taking into

account Uncertainty in data and models

UNCERTAINTY

measurements

model output
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Ingredients

model &

estimate
parameters of

Interest x

Input data Y

You wil need ...
.. a model to describe relation between Y and x
.. to select and apply an appropriate estimation method
.. to apply uncertainty propagation to assess the precision of X

.. to apply tests to assess validity of your model
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Output data
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Ingredients

model &

estimate Output data
parameters of X = q)

Interest x

Input data Y

You wil need ...

= ... a model to describe relation between Y and x

= ... to select and apply an appropriate estimation method

= ... to apply uncertainty propagation to assess the precision of X random errors

= ... to apply tests to assess validity of your model X Repeated individual
measurements
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Ingredients

estimate
Input data Y parameters
of interest x

Output data

X = q(Y)

You wil need ...
... a model to describe relation between Y and x
... to select and apply an appropriate estimation method
... to apply uncertainty propagation to assess the precision of X
... to apply tests to assess validity of your model

= to account for errors in data
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Ingredients

estimate

parameters
of interest x

You wil need ...

g
= ... a model to describe relation between Y and x §
= ... to select and apply an appropriate estimation method
- ... to apply uncertainty propagation to assess the precision of X
= ... to apply tests to assess validity of our model

= to account for errors in data

= to choose best model from different candidates example:

change detection
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Examples

Linear trend model:
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= Ax + €

observation

%  observations

time

Unknowns (model parameters):

I1 initial valueatt =0

L2 slope
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Model formulation

Observable Y . stochastic quantity (due to random errors)
- an observable (“to be observed quantity”) has a certain probability distribution
Observation vector y . realization of Y
- the measured value(s)
Parameter vector x . deterministic, but unknown
Random errors ¢ . stochastic with € v N(O, Ee)

Functional model (linear case) : Y p— A - X —|— € or E(Y) — A - X

X . e .
mox What is the distribution of Y?
Design matrix A . describes functional relationship between Y and x
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Part 7: Sensing and Observation
The distance = between a fixed benchmark and a moving benchmark on a landslide is measured at
timest =0,2,4,6,8,10 months. The observations are shown in the figure.

It is assumed that normally the distance is changing at a constant rate. It is known, however, that

at t = 5 months there was a sudden slip of the landslide, causing an additional change in distance at that
time.

K

X(t) [mm]
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Observations y collected,
we have a functional model A,
how to estimate x?
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Observations y collected, we know A, how to estimate x?

for now we ignore the random errors

A linear system y = A « X
m X mn

/We will consider overdetermined systems with 'r'a'n,k(A) —n<<m h
Hence we have more observations than unknowns
Redundanc = MM — N

N y Y,
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Example of overdetermined system with rank(A) = n

3 1 1] ¢ - 4 1 1] -
51 = |1 2 il 50 = |1 2 il
2 2

_6_ _1 3_'\’:/ _6_ _1 3_'\’_‘/
N = N =
y A y A

| ¥ = _3-
- no solution - — _1—

- in case of perfect measurements,

-i-’;u Delft l.e., errors equal to O



Overdetermined system

Account for random errors,
otherwise generally no solution

Y1 1 1 €1
Y2 | €2
L1
y3| = |1 t3 [ le + | €3
Y4 1 4 €4
Y5 1 5 €5

unknowns : 2 parameters + 5 errors
but only 5 observations...
many possible solutions
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Overdetermined system

Account for random errors,
otherwise generally no solution

Y1 1 1 €1

Y2 1 to €2
L1

y3| = |1 t3 [ N ] + | €3

Y4 1 14 2 €4

Y5 1 5 €5

unknowns : 2 parameters + 5 errors
but only 5 observations...
many possible solutions

'i";u Delft Least squares criterion?

Sea level (mm)
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Quiz: what 1s the least-squares criterion?

minimize the sum of the squared errors

]
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Least-squares principle

- Linear model: y = Ax —+ €

. objective: ~ min(e’ €) = min(y — Ax)? (y — Ax)

X

Minimize the sum of squared errors (i.e., optimization problem)
= Gradient (first-order partial derivatives) =0

= Hessian (matrix with second-order partial derivatives) > 0
n —1

- Solution X = (ATA) AT Ly

]
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Least-squares solution %X observations Y;
Functional model: @ adjusted observations Qz
y = AX _|_ € N I residuals (estimated errors) €,
99% confidence interval
Least squares solution
A i !
k= (ATA) AT .y ye

Adjusted (predicted) observations: o
y = A% x

Residuals (estimated errors):

A

E=y—Y¥

Year
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Properties of Least-Squares estimator

oL/
Modelling, Uncertainty and Data for Engineers



Estimate vs. Estimator

x=

one realization of X
(the estimated values)

(ATA) AT .y

N\

one realization of Y
(the actually observed values)

i,

X

(ATA) A .Y

= |If you repeat the measurements, you will get a different realization (due to random errors)
—> estimated values will be different

= If you repeat many times - you will see distribution of estimated parameters and fitted model

]
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Observed value

Realisation 1

10 - ¢

® Observations
— Fitted trend
=== Truth

]
TUDelft

Measurement number

8 10

Mean trend after 1 realisations

9.0 1

8.5 7

8.0 1

7.5 7

7.0

6.5 7

6.0 1

5.5 1

5.0

== True trend ’
= Mean fitted trend #

Measurement number
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Observed value

Realisation 8

Mean trend after 8 realisations

® Observations ® 04" True trend
— Fitted trend = Mean fitted trend
=== Truth
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Observed value

Realisation 304

Mean trend after 304 realisations
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Estimate vs. Estimator

i,

5= (ATA) ™ AT X X =(ATA) A Y

one realization of X one realization of Y
(the estimated values) (the actually observed values)

= |If you repeat the measurements, you will get a different realization (due to random errors)
—> estimated values will be different

= If you repeat many times - you will see distribution of estimated parameters and fitted model

= We can also determine the expectation and covariance matrix by applying the propagation laws
ou learned last week (Section 5.3)

TUDelft
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From Section 5.3 Linear propagation of mean and covariance

X1 a1 a2 ... a| (Y1 C1
X9 a1 a2 ... as| |Ys Co
X=1.1=1". . . . |+ .| =AY +c
_X m_ Am1 Am2 eee Qmp _Yn_  Cm_

with known E(Y') and covariance matrix Xy, and ¢ a vector with deterministic variables.

The linear propagation laws of the mean and covariance matrix are given by

E(X) = AE(Y) +c

Sy=AXyAL



Applying the propagation laws...

X=(ATA) A Y
\ }
|
LT
in Section 6.10 Notation and formulas
Linear propagation laws if X = LY

Propagation law of the ... Formula

... mean E(X) = LTE(Y)

... covariance matrix Y, =L"SyL



Applying the propagation laws...

j{ - (ATA)—lA Y = linear estimator
\ }

[T

E(j() — (ATA)_IATAX — X = unbiased estimator

expectation = true value

]
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Is least-squares the best way to estimate the
parameters
(= to fit a model to data)?
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Weighted Least-Squares estimation

oL/
Modelling, Uncertainty and Data for Engineers



Least-squares...
y=Ax+¢€

Linear model:

Obijective

Solution:

... treats all observations equally

But what if observations are collected with different sensors, with different measurement precision?

» only use the observations from the best one?

» give different weights to the observations?

]
TUDelft

)

Sea level (mm
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min(e’ €) = min(y — Ax)? (y — Ax)
= (ATA) AT .y
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Least-squares...

Linear model: y = Ax + €

Introduce a weight matrix W

Obijective: min(eTWG)
X

For example with a diagonal weight matrix:

Wi O €1
Woo €2 n
eTWez[el € €m) : | = E Wi €
' : i=1
| O Wmm | |€m]

’f An observation with a larger weight is supposed to have a smaller error;
TU Delft this is considered in this minimization problem



Keep the application in mind!

Decisions to be made based on monitoring and sensing:

- can we safely continue with gas extraction / water injection or extraction / CO2 sequestration?

- do we need to construct higher dikes based on sea level rise predictions / observed deformations?
- do we need to evacuate a region due to risk of a landslide, volcano eruption, tsunami, ...?

- is railway maintenance needed?

- is a safe underkeel clearance of ships approaching Rotterdam guaranteed?

- are motions of bridge within safety margins?

... (etcetera etcetera etcetera)

Need proper data processing and quality assessment of the results

In this part: focus on sensing and monitoring applications

1(!U D I f Estimation principles also needed for model verification and validation,
eltt regression analysis, machine learning 44
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