
Abstract
The Nenana ice classic is an annual betting competition where people can put in guesses on when
the ice of the nearby Tanaka river will break. Because of this, the exact ice breakup date and time of
the Tanaka river has been recorded for the last 105 years. Previous research has shown a relation
between the breakup dates and climate related variables. These relations where used to forecast the
breakup dates. The aim of this report is to improve the existing forecasting models. To do so, some of
the used variables are extensively analysed and a new variable is introduced. The machine learning
technique of artificial neural network modelling will be used to create two models. The first model will
relate the variables to the breakup dates, without taking the betting deadline of April 1st into account.
The results of this model were an improvement of the previous models with a root mean squared error
of 2.73 days and a mean absolute error of 2.28 days. The second model was bounded by the betting
deadline of April 1st and showed far less performance with a root mean squared error of 5.98 days and
a mean absolute error of 4.83 days. The main reason for this poor performance is the lack of relevant
variables that could be included in the model. Although further research is required, this report gives
some interesting insights in the effect certain variables have on the ice breakup dates as well as the
use of artificial neural networks for capturing these relations.
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Introduction
The Nenana Ice Classic is an annual betting competition which takes place in the small town of Ne-
nana, Alaska. It started In 1917, when a group of railroad engineers started putting bets on when the
ice of the nearby Tanaka river would break. Since then, the guessing game has turned into an annual
tradition with thousands of participants and a jackpot as high as $300.000 (“Nenana Ice Classic”, 2022).
Every year during freeze up in November, a tripod is placed on the ice. The moment of break up is de-
fined as the moment when the tripod falls over. This triggers a clock to stop and this way, the exact ice
breakup date and time of the river for the last 105 years is recorded, resulting in a nontraditional data set.

The ice normally breaks up in late April or early May. However, previous research on the data set
of the Nenana ice classic by Van Asselt, 2020 and Terwogt, 2021 showed the existence of relations
between the breakup dates and certain climate related variables. They both made models that used
those relations in order to forecast the ice breakup dates. This report will build upon their work and
tries to to improve the previous made models by extensively analysing some of the variables used and
introducing new ones. Also, the report introduces a new machine learning approach called artificial
neural network modelling to relate the variables to the breakup dates. The main questions that will be
investigated in this report are: How can the current climate variables data be improved? and Are better
results obtained when using the new data and modelling technique?.

In order to constructively substantiate answers for the research questions, this report is structured in
five chapters. First, the context of the research is given. This consists of theoretical background about
the climate of Nenana and its surroundings, ice breakup, previous research on the same topic and an
introduction to artificial neural networks. The second chapter provides an analysis on the temperature,
ice thickness and discharge data. Chapter two also introduces a new variable that will be used in the
model. Next, the method of obtaining the results will be explained. In the fourth chapter, the results will
provided and be discussed. The final chapter answers the research questions and draws conclusions
out of the findings. Also, new research recommendations are given.
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1
Context

This chapter introduces the context of this research. First, a synopsis of the climate and environmental
subjects related to the Nenana Ice Classic is given. Next, previous research on the Nenana Ice Classic
is summarized and the following research gaps are discussed. Last, the concept of artificial neural
networks is introduced and its use is motivated.

1.1. Climate and Environment
This section provides an overview of the climate and environmental facets related to the Nenana Ice
Classic. The section will work from small scale (Nenana) to larger scale (Alaska). This section is
mainly based on the analysis of Terwogt, 2021 and Van Asselt, 2020. However, some new insights are
presented as well.

1.1.1. Nenana
The city of Nenana is a small city, situated in the centre of Alaska, United States. It is located near the
intersection of the Nenana river (South) and the the Tanana river (East). The city was incorporated in
1921 and has a population of 363 (“City of Nenana”, 2021). The existence of the city has its roots in
the gold mining industry and just after it was founded, in 1917, the start of the tradition of the Nenana
Ice Classic began. The tripod used for the Nenana Ice Classic is located on the Tanana river, between
the Mears Memorial Bridge and the George Parks Highway bridge. The tripod is placed at about 90
meters from the shore (“Nenana Ice Classic”, 2022). The marker in figure 1.1 gives a visual indication
of the location of the tripod.

Figure 1.1: Approximate location of Nenana Ice Classic Tripod, taken from Apple Maps.
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2 1. Context

The air temperature in Nenana can differ between -25°C in January and +22°C in July. The summers
are often wetter than the winters with a mean precipitation of about 58 mm in July and 5 mm in March
(Weatherspark, 2022).

1.1.2. Tanana River Basin
The Tanana river basin is located in the central east of Alaska. It covers about 115.500 𝑘𝑚2 and is
bordered on the north by the Yukon-Tanana Highlands and on the south by the Alaska range. Its trib-
utaries are either glacially fed rivers coming from the Alaska ranges or non-glacially fed rivers coming
from the Yukon-Tanana Highlands. Eighty-five percent of its annual discharge comes from the Alaska
range (Collins, 1990).

The climate of the Tanana river basin can be classified as continental. It has long, cold winters and
short, but hot summers. The annual mean temperature is about -3.5°C, but extremes of -52°C and
+35°C do occur. The precipitation varies from 250 to 560 mm/year with snowfall of 76-150 cm/year
(Collins, 1990).

Figure 1.2: Location of Tanana river basin (grey), Yukon and Tanana river (blue) and Nenana (red dot) (edit by Terwogt, 2021,
from original figure by Pattison et al., 2018).

1.1.3. Alaska
Alaska is Northernmost state of the United States. It is bordered by the Pacific Ocean, Bering sea,
Arctic Ocean and Canada. It has a subarctic climate (Kottek et al., 2006) and because of unsteady na-
ture and correlation between climate forcings, the temperature and precipitation in Alaska can change
significantly. It is concluded by Papineau, 2016 that large scale climate forcings can be linked to the
climate patterns of Alaska. The two most important climate forcings for Alaska are described below.

• Pacific Decadal Oscillation (PDO)
PDO is the fluctuation of the sea surface temperature (SST) of the Central North Pacific Ocean.
It has a phase of about 20 to 30 years and a 2 to 5 year reversal occurrence. When a positive
phase occurs, the sea surface temperatures are higher than normal, resulting in warmer SST’s
on near the shore of Alaska.

• El Nino and Southern Oscillation (ENSO)
ENSO refers to the fluctuations of SST’s in equatorial and subtropical regions. It can be divided in
two phenomena: El Nino and El Nina, which have opposite effects. El Nino causes water to warm
up while El Nina causes the water to cool. Both phenomena last for about 12-18 months and can
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be measured by water temperature and air pressure. During El Nina, polar jet air streams spend
more time at lower latitudes, this leads to cooler temperatures in Alaska. (Papineau, 2016, Van
Asselt, 2020).

The large scale climate forcings described above are linked to ice breakup by Bieniek et al., 2011.
They conclude that during El Nino, fewer storms will occur in Alaska, and air temperatures will be higher.
This will lead to an early ice breakup. During El Nina, the opposite happens, meaning more storms
occur and air temperature is lower. This leads to a late breakup date. In the research of Van Asselt,
2020 and Terwogt, 2021, they based the PDO and ENSO variables on Bieniek et al., 2011. The same
will be done here.

1.2. Ice breakup
This section gives an insight in the process of ice breakup.

1.2.1. Definition
River ice breakup is an annual event that takes place when milder temperature conditions or increasing
discharge cause ice covers on frozen rivers to break. It is a crucial moment that triggers many other
biological processes (such as the migratory behaviour of fish) as the ice cover disintegrates and the
river opens up (Beltaos, 1997). Also, flooding caused by ice jams can have severe consequences
(Beltaos, 2003). Beltaos, 2003 describes the process of ice breakup as a succession of four distinct
phases: pre-breakup, onset, drive and wash. The pre-breakup phase is characterized by thermally
induced reductions in thickness and strength. This will make the ice more vulnerable for fracture and
movement. The onset is defined by the ice fracturing in smaller blocks. This is caused by an increasing
discharge caused by ice and snow melting and higher precipitation rates. The drive is the movement
of the ice blocks and slabs by the current and the wash is when all ice parts have been washed away.

1.2.2. Ice Dynamics
According to Beltaos, 2003 ice breakup can be demarcated into two different extremes. Thermal decay
of ice occurs when mild and warm temperatures are combined with low run-off. The ice will melt slowly
until it disintegrates into the water under the limited forces of the current. In case of mechanical ice
breakup, river run off is often very high and is caused by high precipitation rates and ice and snow
melting. The higher run-off results in high hydrodynamic forces on the ice, causing the ice to lift and
break into smaller blocks. This form of ice breakup has a high risk for ice jams. Normally, a breakup
will be somewhere in between these two extremes, meaning that the breaking of the ice is both caused
by thermal and mechanical influences.

1.3. Previous Research
As described in section 1.2, ice breakup can have severe consequences. Because of this, many re-
searchers have tried to relate and forecast the breakup dates of river ice with climate variables. This
report will build upon the work of Van Asselt, 2020 and Terwogt, 2021. Their objective was to relate
the ice breakup process of the Tanana river with chosen climate related variables and to construct a
forecasting model to predict future ice breakup dates. The ice breakup output variable is defined as
the number of days after the equinox (i.e.: the number of days after the day where the center of the
sun is directly above Earth’s equator). This variable will be called DE in the rest of the report. In this
section the linear regression model and the Random Forest regression model made by Van Asselt,
2020 and Terwogt, 2021, will be discussed. This section first provides an overview of the variables
used in the previous models. Next, a summary of their work and the models that they made is given.
Last, research gaps and other potentially interesting aspects that were not included are discussed.

1.3.1. Variables
This section provides an overview of the variables used by Van Asselt, 2020 and Terwogt, 2021. Most
variables were introduced by Van Asselt. Terwogt subsequently added the number of heatwave days
per month. A day is considered as a heatwave day when it is part of at least three consecutive days
where the temperature is higher than the 95th percentile of the temperature data between 1917 and
1947 (Terwogt, 2021). The Accumulated degree-days thaw (ADDT) and accumulated degree-days
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frost (ADDF) are based on the reference point of -5°C and can be defined by the sum of all mean daily
temperatures below (ADDF) or above (ADDT) the reference point in a certain period. The ice thickness
is measured by the organisation of the Nenana Ice Classic itself and the amount of measurements as
well as the dates on which they are done differ per year. Therefore, to create a consistent data set,
Van Asselt, 2020 chose to use four reference points (February 20th, March 1st, March 15th and April
1st). The measurement made closest to one of the reference points is assigned to that reference point.
This resulted in a dataset with four measurements per year. The variables used, along with the symbol
that will be used further on in the report, the units, the period of observation and the source of the data,
are presented in table 1.1 below.

Ice breakup aspect Variable Symbol Unit Period Source

Thermal ice
deformation

Monthly average temperature T𝑚𝑜𝑛𝑡ℎ °C 1917-2018 BE
Accumulated degree-days thaw
(base = -5°C)

ADDT °C 1917-2018 BE

Heat wave days per month HWd𝑚𝑜𝑛𝑡ℎ d 1947-2018 BE
Solar
radiation

Cloud coverage CC𝑚𝑜𝑛𝑡ℎ % 1917-2018 BE
Average winter precipitation P𝐷𝐽𝐹𝑀 mm 1917- 2018 CRU

River discharge Monthly average discharge Q𝑚𝑜𝑛𝑡ℎ 𝑚3/s 1963-2018 USGS

Ice thickness
Average winter temperature T𝐷𝐽𝐹𝑀 °C 1917-2018 BE
Accumulated degree-days frost
(base = -5°C)

ADDF °C 1917-2018 BE

Ice thickness t ” 1989-2018 NIC
Large scale
SST data

ENSO effect in February - May ENSO𝐹𝑀𝐴𝑀 °C 1951-2018 NOAA
PDO effect in February - May PDO𝐹𝑀𝐴𝑀 °C 1951-2018 NOAA

Table 1.1: Variables used by Terwogt and Van Asselt. Including the symbol that will be used further on in the report, the units,
the period of observation and the source of the data. Sources are: BerkeleyEarth, 2021, CRU, 2021, USGS, 2021, “Nenana Ice
Classic”, 2022 and NOAA, 2020.

1.3.2. Linear regression model
In this paragraph, the potentially linear relationships between the initially chosen variables and the
breakup dates are discussed. To do so, a linear multi regression model, heavily based on Van Asselt’s
model, is constructed and the process is briefly explained below.

A linear multi regression model is a strong statistical tool which can be used for determining corre-
lation between a response variable and explanatory variables (Chatterjee et al., 1979). It will result in
the following model:

𝑦 = 𝛽0 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 +⋯+ 𝛽𝑝 ∗ 𝑥𝑝 + 𝜖
Where:
𝑦 = The response variable (ice breakup date)
𝛽 = Partial regression coefficients
𝑥 = Explanatory variables (climate related variables)
𝜖 = Random disturbance

First, for all variables, an ordinary least squares (OLS) regression is held. To determine whether
the model is a good fit, the results of the OLS regression need to be examined. To do so, two output
values are taken and qualified: The 𝑅2 value is an indication for the proportion of the variance in the
dependent variable that is approached by the regression and is calculated by dividing the sum of the
regression total by the sum of the total squares total. 𝑅2 values vary between 0 and 1 where 0 means
no correlation and 1 means full correlation. The F-statistic value shows how much the fit is statistically
meaningful. It is calculated by comparing the variance with and without the input of independent vari-
ables. (Dekking et al., 2005). Only the variables that are qualified as significantly linear related with the
breakup date (meaning they have a 𝑅2 value of at least 0.1 and a minimum F-statistic of 7), are used.
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The scatterplots with fitted line of these variables are presented in appendix A.

The next step in conducting a linear regression model is to test the remaining variables on their
normality and multicollinearity. This can be done with conducting a variable matrix. On the diagonal of
the matrix (see appendix B), it can be seen that most variables are normally distributed. It can also be
noticed that the mean temperature and the accumulated degree days thaw (ADDT) are highly corre-
lated. Therefore, they cannot be used in the same model.

After making multiple models with the remaining variables and testing them for their performance
and significance, two final models are constructed which are presented below:

𝐷𝐸 = 57.52 − 0.045 ∗ 𝐴𝐷𝐷𝑇 + 0.25 ∗ 𝑡𝐹𝐸𝐵20

𝐷𝐸 = 55.24 − 1.32 ∗ 𝑇𝐴𝑝𝑟 − 1.57 ∗ 𝑇𝑀𝑎𝑦

The ADDT model has a 𝑅2 value of 0.84 and an F-statistic value of 65.48. The mean temperature
model has a 𝑅2 value of 0.776 and an F-statistic value of 171.9. These results show that, when making
a linear model, only very simple models with two variables, produce somewhat good results.

Van Asselt, 2020 made two models: One model to predict the ice breakup dates for the coming 80
years based on IPCC climate scenarios and a model that is time bounded by the betting deadline of
April 1st used as a tool to forecast the ice breakup date of that year. His forecasting model predicted an
ice breakup date which diverted about twelve days from the actual breakup date of that year. He con-
cluded that the relatively poor performance of his model could be attributed to the fact that the breakup
dates are mostly influenced by the variables close to the breakup dates, such as the temperature in
April and May and the ice thickness close to the breakup date. He also suggested looking at a non-
linear model.

1.3.3. Random forest regression model
In this paragraph the results of the random forest regression model of Terwogt, 2021 are discussed.
The variables and data used in this model are the same as in the linear model.

Random forest (RF) regression is a machine learning technique and is introduced by Breiman, 2001.
The algorithm uses multiple decision trees or ‘tree predictors’ that all give an estimate for the output
variable of the model. The mean of all tree predictors is then taken to give a better prediction than just
a single model. The tree predictors are functions that relate the input to the output variable. These
functions are formed by training the model. To do so, the input data is split into two groups: One
dataset to train the model and one to test it. The readily available Random forest regression module of
the package scikitlearn (Pedregosa et al., 2011) is used to implement and validate the RF regression
model.

Terwogt chose to use 75 percent of the data for training and 25 percent for testing. He also made two
models: A descriptive model, which wasn’t bounded by the betting deadline, and a forecasting model
to predict the ice breakup date of that specific year. His descriptive model has a Root Mean Squared
Error (RMSE) of 2.8 and a Mean Absolute Error (MAE) of 2.26. The forecasting model showed less
performance with a RMSE of 5.98 and an MAE of 5.07. Terwogt concludes that the relatively poor
performance of his forecasting model is mostly influenced by the lack of available data and the fact
that RF regression models are not well suited for extrapolation cases (Hastie et al., 2009). In the figure
below, the relative importance of all variables can be seen.
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Figure 1.3: Relative importance of all variables for a Random Forest model with 100 tree predictors. In the figure the different
models tested by Terwogt are indicated. The final model contained the variables of model B (source: Terwogt, 2021)

1.3.4. Research gaps
The recommendations made by Van Asselt, such as using the river’s discharge data and creating a
non-linear model are mostly discussed by Terwogt. Terwogt further mentions that his RF regression
model can still be significantly improved by gathering more input data, performing a hyper-parameter
sensitivity analysis or a further, detailed analysis of the data by using different computations and smaller
time intervals. He also suggests looking at the possibilities of using an artificial neural network (ANN)
model for the forecasting of the ice breakup.

At last, some, more general, research directions suggested by Van Asselt and Terwogt are the
following:

• Exploring relationships between betting behaviour of participants and their view on climate (change).

• Performing a broader analysis on climate change in general and the effect it has on organisms in
Alaska.

1.4. Artificial neural networks
In line with the suggestions of Terwogt, 2021, this report will describe the use of an artificial neural
network (ANN) in forecasting of the ice breakup. In this section, a brief introduction to artificial neural
networks will be given. Next, the choice of using ANN is motivated.

1.4.1. Introduction to artificial neural networks
The fundamental theory behind artificial neural network modeling, a machine learning technique in-
spired by the way neurons signal to each other in the human brain, was first described by McCulloch
and Pitts in 1943 McCulloch and Pitts, 1943. Since then, many researchers have investigated the use
of it, but it wasn’t until the 1980’s when interest in ANN re-emerged due to technical developments
which increased the processing capacity.

An artificial neural network consists of a group of processing units called nodes that receive input
from other nodes or external sources. This input is then used to compute an output signal which is
propagated to other nodes. Each node 𝑘 has a state of activation 𝑦𝑘 and each connection between
node 𝑘 and node 𝑗 has a weight 𝑤𝑗𝑘. ANN models consist of three different types of layers with nodes:
One input layer, which receives external data from outside the neural network, one or multiple hidden
layers, whose input and output stay within the neural network, and one output layer, which sends the
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data out of the neural network. The input of node k (𝑠𝑘) at time 𝑡 can be described as the weighted
sum of the outputs of the connecting nodes plus a bias term, 𝜃. This input 𝑠𝑘 is then transformed by
activation function 𝐹𝑘 to a new activation state 𝑦𝑘 for node 𝑘 (Kröse et al., 1993). This process is visually
described in figure 2.1

Figure 1.4: Propagation rule with weighted summation for an artificial neural network. The input of node k (𝑠𝑘) at time 𝑡 can be
described as the weighted sum of the outputs of the connecting nodes plus a bias term, 𝜃. This input 𝑠𝑘 is then transformed by
activation function 𝐹𝑘 to a new activation state 𝑦𝑘 for node 𝑘 (source: Kröse et al., 1993)

When input as well as output data is known, an ANN model can train itself by constantly adjusting
the weights between two nodes. In this way, a final model is conducted which can be used to predict
the values of output data by providing it input data.

1.4.2. Motivation
It is expected that making use of an ANN will improve the forecasting (bounded to betting deadline)
as well as the descriptive (not bounded to betting deadline) model with respect to the random forest
regression models by Terwogt, 2021. This is because ANNs have more parameters to tune and it is
concluded by Płoński, 2019 that a well tuned neural network model will perform better than a random
forest regression model. One downside of using ANN over random forest is the fact that ANN will give
less insight in the decision making process. Where computing the exact influences of each variable
is possible with RF, it is not possible to do so with ANN. Therefore, the ANN model can be seen as a
black box. However, this does not influence the results. One other unfavorable feature of ANN is the
amount of data it needs to come up with good results. Yet, this is also the case for RF and moreover,
(among others) Zhao et al., 2012 proved that using ANN with a dataset of similar size and variables
can still produce good forecasting results.
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Variables

Apart from using a new modelling technique, it is expected that introducing new variables and crit-
ically analysing old ones will increase the performance of the model. This chapter investigates the
temperature, discharge and ice thickness data.

2.1. Local and regional temperature
As concluded by Van Asselt, 2020 and Terwogt, 2021, the variables that are most important when
making a model to forecast ice breakup are related to the temperature. There are two temperature
data sets available: The first one represents the average regional temperature data of a large area
around Nenana (area with borders lon = -148.000, lon = -149.000 and lat = 64.000, lat = 65.000). The
other data are measurements of a weather station inside Nenana (local temperature data). Because of
the high correlation between temperature and ice breakup, it is important to determine what data set is
best to use when relating the temperature data to the breakup dates. To do so, first, the two data sets
are compared in the figure below:

Figure 2.1: Comparison of local and regional temperature data. For readability, only the data between 2015 and 2018 is shown

The regional and the local data show almost the same trend. However, it can be seen that the
extremes of the local data are bigger than those of the regional data. This means that in Nenana, the
winters are often colder and the summers warmer than the regional average. To see what this means in

9
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relation to the ice breakup dates, an ordinary least squares (OLS) regression analysis is held with both
data sets. The two figures below show the relation between the mean, local and regional, temperature
in April with the breakup dates.

(a) Local (b) Regional

Figure 2.2: Local and regional April temperature OLS fit. The figures show a higher 𝑅2 value as well as a higher F-statistic value
for the regional temperature data.

The figures show that the mean regional temperature in April has a stronger relationship with the ice
breakup dates than the local temperature. The same process has been repeated with other months and
they showed similar results. This could be attributed to the fact that the regional temperature influences
not only the local temperature, but also other driving factors such as discharge and water temperature.
These findings are in line with the work of Williams et al., 2004.

2.2. Ice thickness

One of the main things that stands out when comparing the linear- with the random forest regression
model is the influence of the ice thickness. In the linear model it is concluded that ice thickness has
a significant relationship with the breakup dates. According to the RF model, the ice thicknesses are
the variables with the least importance to the ice breakup date. This can be explained by the fact
that the individual ice thicknesses are strongly correlated. This is proven with the variable matrix in
the appendix. Because of their high correlation they all show the same trend making their relative
importance lower than when just one ice thickness is considered in the model. In the linear model it is
concluded that the ice thickness close to February 20th is the ice thickness variable with the greatest
correlation with the breakup dates. According to Beltaos and Bonsal, 2021, the primary variable of
interest related to ice thickness is the maximum measured ice thickness. One other way of interpreting
the ice thickness data is to look at the last known (April 1st) ice thickness measurement. Therefore,
to test which ice thickness variable is most important in relation to the Nenana Ice Classic data, all
three variables are tested for their linear relation with the ice breakup dates. Also, since ice growth and
decay is proportional to the square root of ADDF and ADDT (Michel, 1971; Murfitt et al., 2018), the ice
thickness variables are also tested for their quadratic relation with the ice breakup dates. The result
can be seen in figure 2.4a,b,c.
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(a)

(b) (c)

Figure 2.3: Linear (orange line) and quadratic (blue line) fit for maximum ice thickness (a), ice thickness measurement closest
to February 20th (b) and ice thickness measurement closest to April 1st (c)

The figures show that themaximummeasured ice thickness has the strongest linear relation with the
breakup dates and the ice thickness closest to April 1st has the strongest quadratic relation. However,
the differences in RMSE are very small so no ice thickness measurement can be pointed out as most
important. Since it was expected that the maximum ice thickness would have gained the best results,
these findings are not in line with Beltaos and Bonsal, 2021. However, it could be explained by the fact
that the ice thickness is not measured every day, and therefore the maximum ice thickness measured
might not be the actual maximum ice thickness of that year. Because of the uncertainty of the maximum
ice thickness measurement as well as the fact that the ice thickness measurement closest to April 1st
has the strongest quadratic relation, the ice thickness measurement closest to April 1st will be used in
the remainder of this report.

2.3. River Discharge

In this section, the Tanaka river’s discharge is related to the temperature and the breakup dates. The
discharge data is obtained from a gauging station 200meters downstream of the location were the tripod
is placed. The figure shows that the discharge and temperature are strongly correlated. This can be
seen when looking at the peaks and the initial discharge (meaning the first discharge measurements
after the ice breakup) of each year. This is because higher temperatures cause more snow and ice
to melt, resulting in a higher discharge (Bieniek et al., 2011). The figure shows that the discharge
is only recorded after the breakup date. The reason for this is that from a frozen river no discharge
measurements can be made. This trivial observation is, however quite important for the final model.
Since the discharge measurements are always made after the ice breakup, the discharge cannot be
used in the forecasting model.
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Figure 2.4: Time series of the the regional temperature data (shown in green green) and river discharge (blue). For all variables,
the daily mean is used. For readability, only the the data of 2015 till 2018 is shown.

2.4. Thaw onset
This section introduces the thaw onset variable. The thaw onset is defined as the last day before the ice
breaks with a minimum temperature of -5°C. It is expected to have a strong linear relationship with the
breakup dates because it indicates a starting point of the decay of the ice thickness. In the figure below,
the temperature data of 2015-2018 is given. Indicated are the breakup and the thaw onset dates.

Figure 2.5: Time series of the the regional temperature data (shown in green green), indicated are the breakup and thaw onset
dates (red and black respectively). For readability, only the the data of 2013 till 2018 is shown.

From figure 2.5 it can be observed that the distances between the thaw onset date and the breakup
dates all have a similar length. Because of this a strong linear relation ship is expected. To test this,
an OLS regression is held. The results can be seen in figure 2.6.
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Figure 2.6: Ordinary least squares regression analysis of thaw onset dates.

Figure 2.6 shows a strong linear relation between the thaw onset and breakup date. Therefore, it
is expected that using the thaw onset variable will improve the model. However, more than two thirds
of the thaw onset dates were after the betting deadline. Therefore the thaw onset data will probably
not be used in the forecasting model. To overcome this problem, the thaw onset threshold has been
tested for lower temperatures (-10°C, -15°C) as well. These thresholds resulted in more data points
that could be used for the forecasting model. However, their relation with the breakup dates was far
less significant and therefore, they will not be used.



3
Methodology

In this chapter, the artificial neural network model is applied on the case of the Nenana ice classic. The
model’s setup as well as the validation and configuration procedures are explained.

3.1. Python package
The mathematical background and process of an ANN is explained in paragraph 1.4.1. This process
will not be programmed by hand. Instead, the python package scikit-learn (Pedregosa et al., 2011)
will be used. From the scikit-learn package, the multi-layered perceptron regressor (MLPRegressor)
will be used. An MLP can be trained to approximate any measurable function without making prior
assumptions concerning the data distribution (Gardner and Dorling, 1998).

3.2. Model set up
In this section the model’s set up is explained. The model is based around the assumption of a relation
between the response- and explanatory variables. The response variable is the breakup date and the
explanatory variables are the climate related variables introduced in section 1.3.1 and chapter 2. The
objective is to find a function 𝑓 which relates the explanatory variables 𝑋 to the response variable 𝑦:

y = 𝑓(X)

Where:

• y is a [𝑛 × 𝑗] matrix with 𝑛 test patterns and 𝑗 response variables

• X is a [𝑛 × 𝑘] matrix with 𝑛 test patterns and 𝑘 explanatory variables

• 𝑓 is formulated by the trained artificial neural network’s structure and weights.

The function 𝑓 is determined by training the neural network. To do so, the data is split into two groups:
Training data and testing data. The training data consists of the explanatory as well as the response
variable. By providing both the input (X) and the output (y) of the model, the function 𝑓 is found by
the MLPRegressor. Next, explanatory variables of the test data are used as input in the now known
function 𝑓. This way, output variables are obtained.

3.3. Validation process
This section provides the validation process to quantify a certain model’s performance.

3.3.1. Metrics
When validating the model, the obtained output data from the model has to be compared with the
observed values. To quantify the performance of the model the root mean squared error (RMSE) and

15



16 3. Methodology

the mean absolute error (MAE) are calculated. A low RMSE and MAE indicate a good performing
model.

𝑅𝑀𝑆𝐸 = √1/𝑛
𝑛

∑
𝑖=1
(𝑦̂𝑖 − 𝑦𝑖)2

𝑀𝐴𝐸 = 1/𝑛
𝑛

∑
𝑖=1
|𝑦̂𝑖 − 𝑦𝑖|

Where:

• 𝑦̂ = The predicted value

• 𝑦 = The observed value

3.3.2. Cross validation
For each time the model is validated, the data is distributed into train and test data randomly. Since
some distributions perform better than others, each time the model is validated, a different RMSE and
MAE is obtained. This is problematic since the inconsistency of the validation metrics makes it hard to
compare different models. To overcome this problem, for each model, the K-fold cross validation will
be applied. K-fold cross validation splits the data into 𝑘 = 1, 2, ...𝐾 equal sized groups. First, for 𝑘 = 1,
the model is trained with the 𝐾−1 groups and tested with the 𝑘 = 1 group. This process is repeated for
𝑘 = 2, 3, ...𝐾. The validation metrics of all validations are then averaged, resulting in a constant RMSE
and MAE that can be compared with other models. In this case, a K value of 5 is chosen.

3.4. Model configurations
In order to determine the best model configurations, different models have to be created and compared
with each other. This section discusses the process of finding these configurations.

3.4.1. Data organisation
To use the MLPRegressor function, the data has to be sorted in the right way. The input of the function 𝑓
is a [𝑛×𝑘] matrix, meaning that all variables must have 𝑛 data points. Since certain variables have less
data points than others, not all variables can be used in the same model without shortening some of the
variables. E.g., When the ice thickness data (data available from 1989 till 2018) and the temperature
data (data available from 1917 till 2018) are used in the same model, only the temperature data of
1989 till 2018 can be used. Therefore, the first step in conducting the model is to determine the best
performing combination of 𝑛 and 𝑘.

3.4.2. Overfitting
When variables with a relative low importance and weak relation with the ice breakup dates are left
inside the model, they can cause the model to overfit. Since it is not possible to see the relative
importances of all variables in the ANN model, this process has to be done by trial and error. One by
one, variables will be left out, resulting in different models. This way, by looking at the cross validated
RMSE and MAE, the model which overfits the least can be obtained.

3.4.3. Hyperparameters grid search
The MLPRegressor module from scikit-learn has several parameters that can be tweaked. These pa-
rameters greatly influence the outcome of the model and therefore, choosing the right hyperparameters
is crucial. To find the right parameters, a grid search will be held. For this, the scikit-learn package
GridsearchCV will be used. GridsearchCV takes an estimator (the MLPRegressor) and the parameters
that need to be optimised as input. It returns the values of the parameters which cause the estimator to
have the best performance. The parameters that will be investigated are: Hidden layer size, activation
function (𝐹𝑘) and alpha (regularization term). Other parameters will either be set on default or another
fixed value.



4
Results and discussion

In this chapter, the results and findings of the ANN model described in chapter 3 will be given. First,
the findings of the model’s configuration process are discussed and the results presented. Next, the
results of the two final models are analyzed.

4.1. Model configuration
To construct a good performing model, the model’s configurations have to be determined. This will be
done by performing the steps described in 3.4. The different models performances will be quantified
by the validation process described in section 3.3.

4.1.1. Data
The first step in determining which variables will be used in the final model, four different datasets are
created: One dataset with data available from 1917-2018, one with data available from 1951-2018,
one with data available from 1963-2018, and one with data available from 1990-2018. These models
were chosen in such a way that every explanatory variable has all its data points present in at least one
model. All datasets were tested for their cross validated RMSE and MAE. The results can be seen in
the table below.

Model Variables
(𝑘)

Data points
(𝑛)

RMSE MAE

A (1917-2018) 11 102 6.65 4.05
B (1951-2018) 15 68 2.96 2.45
C (1963-2018) 18 56 13.53 6,66
D (1990-2018) 19 29 6.93 5.86

Table 4.1: First step of configuration process: Determining the cross validated RMSE and MAE of four models with different
sizes

Table 4.1 shows a clear winner. The model with datapoints from 1951-2018 (Model B) results in the
lowest RMSE and MAE. This model contains the variables: 𝑇𝑀𝑎𝑟 , 𝑇𝐴𝑝𝑟 , 𝑇𝑀𝑎𝑦 , 𝐴𝐷𝐷𝑇, 𝐴𝐷𝐷𝐹,𝐻𝑊𝑑𝑀𝑎𝑟,
𝐻𝑊𝑑𝐴𝑝𝑟 , 𝐻𝑊𝑑𝑀𝑎𝑦 , 𝐶𝐶𝑀𝑎𝑟 , 𝐶𝐶𝐴𝑝𝑟 , 𝐶𝐶𝑀𝑎𝑦 , 𝐸𝑁𝑆𝑂𝐹𝑀𝐴𝑀 , 𝑃𝐷𝑂𝐹𝑀𝐴𝑀 , 𝑇ℎ𝑎𝑤𝑂𝑛𝑠𝑒𝑡 and 𝑃𝑟𝑒𝐹𝑀𝐴. Despite the
smaller number of datapoints, model B shows significantly better results than model A. This indicates
that the variables added in model B have a strong relationship with the breakup dates. These variables
are the Heatwave day variables (𝐻𝑊𝑑𝑀𝑎𝑟 , 𝐻𝑊𝑑𝐴𝑝𝑟 , 𝐻𝑊𝑑𝑀𝑎𝑦) and 𝐸𝑁𝑆𝑂𝐹𝑀𝐴𝑀.

Another interesting observation that can be made from table 4.1 is the difference in RMSE and MAE
of model C and model D. Model D has almost half the amount of datapoints, yet its RMSE and MAE
is significantly lower. The only variable added in model D is the ice thickness measurement closest to
April 1st (𝑡𝐴𝑝𝑟1). In section 2.2 it was predicted that the ice thickness variable has a strong relation with
the breakup dates. The findings in this section prove this prediction.
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4.1.2. Overfitting and relative importance
The next step in determining the variables that will be used in the final model, consists of a trial and error
process of removing variables one by one and comparing the different models. This way, overfitting
is reduced. After testing 15 different models, it is observed that none of the models result in a lower
RMSE and MAE than the model with all variables in it. The metrics of all models can be seen in the
table in appendix C. The table also gives an indication for the relative importance of the variables.
If a model without a certain variable has a high RMSE or MAE, that certain variable has a higher
importance in the model. With this in mind, it is confirmed that the heatwave day variables have a
high importance, as stated in section 4.1.1. Also the newly introduced variable 𝑇ℎ𝑎𝑤𝑂𝑛𝑠𝑒𝑡 has a high
relative importance. The results indicate that no variable should be left out of the final model. However,
the relative importances also depend on the hyperparameters. After the hyperparameters are tweaked,
the trial and error process will be redone.

4.1.3. Hyperparameters
The parameters that were investigated using the grid search were hidden layer sizes (sizes tested
are: 1,2,3,5,7,9,11,13,15,17,19), Activation function (𝐹𝑘) (options are: identity, logistic, tanh, relu) and
alpha (regularization term) (alphas tested are 5 ∗ 10−5, 1 ∗ 10−4, 2.5 ∗ 10−4, 5 ∗ 10−4 ). The results of
the grid search indicated that the best performing model has the parameters: ℎ𝑖𝑑𝑑𝑒𝑛𝑙𝑎𝑦𝑒𝑟𝑠𝑖𝑧𝑒 = 1,
𝐹𝑘 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦, 𝑎𝑙𝑝ℎ𝑎 = 5 ∗ 10−5. The parameters Maximum iterations (2500) and solver (lbfsg) were
set on a fixed value. The rest of the parameters were set on default. After redoing the trial and error
process with the new parameters, it is found that removing the variables 𝐶𝐶𝐴𝑝𝑟 and 𝑃𝑟𝑒𝐹𝑀𝐴 will result
in a better performing model. Since the MLPregressor as well as the GridsearchCV modules don’t give
any insight in the decision making process, the exact reason of these results remains unknown.

4.2. Final model
The steps described in section 4.1 have led to the final model. The final model consists of the vari-
ables 𝑇𝑀𝑎𝑟 , 𝑇𝐴𝑝𝑟 , 𝑇𝑀𝑎𝑦 , 𝐴𝐷𝐷𝑇, 𝐴𝐷𝐷𝐹,𝐻𝑊𝑑𝑀𝑎𝑟,𝐻𝑊𝑑𝐴𝑝𝑟 , 𝐻𝑊𝑑𝑀𝑎𝑦 , 𝐶𝐶𝑀𝑎𝑟 , 𝐶𝐶𝑀𝑎𝑦 , 𝐸𝑁𝑆𝑂𝐹𝑀𝐴𝑀 , 𝑃𝐷𝑂𝐹𝑀𝐴𝑀
and 𝑇ℎ𝑎𝑤𝑂𝑛𝑠𝑒𝑡. The model has a RMSE of 2.73 and a MAE of 2.28. The results are visualized in
figure 4.1

Figure 4.1: Observed and predicted breakup dates of final model. The figure shows a relative good performance, with both a
RMSE and MAE of 2-3 days.

The figure shows that the model can relate the climate variables to the breakup dates quite accurate.
Most predictions were less than 3 days off of the actual breakup date. The error of the model remains
almost constant, meaning that no significant difference in error between very early and average breakup
dates can be seen. Relatively late breakup dates are predicted a little bit worse. The results show a
slight improvement in respect tot the work of Terwogt, 2021 (RMSE = 2.91, MAE= 2.26). The question
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arises whether this improvement is the result of the added variable 𝑇ℎ𝑎𝑤𝑂𝑛𝑠𝑒𝑡 or the use of ANN
instead of RF. To check this, the thaw onset is removed from the model. The results of this model are
an RMSE of 2.75 and anMAE of 2.21. This is in line with the hypothesis that making use of ANN instead
of RF will improve the model slightly, as stated in section 1.4.2. The reason for the small influence the
thaw onset date seems to have, could be the great correlation between the thaw onset date and the
accumulated degree days thaw.

4.3. Forecasting model
To obtain a model that is bounded by the betting deadline of April 1st, first, the start variables have to be
heavily reduced due to the betting deadline. All the variables which only have data points in April or May
(𝑇𝐴𝑝𝑟 , 𝑇𝑀𝑎𝑦 , 𝐻𝑊𝑑𝐴𝑝𝑟 , 𝐻𝑊𝑑𝑀𝑎𝑦 , 𝐶𝐶𝐴𝑝𝑟 and 𝐶𝐶𝑀𝑎𝑦) will be removed. The variables 𝐸𝑁𝑆𝑂𝐹𝑀𝐴𝑀 , 𝑃𝐷𝑂𝐹𝑀𝐴𝑀,
𝑃𝑟𝑒𝐹𝑀𝐴, 𝐴𝐷𝐷𝑇 and 𝐴𝐷𝐷𝐹 will be adjusted in such a way that only data from before April 1st is left
over. The discharge variable 𝑄 as well as the 𝑇ℎ𝑎𝑤𝑂𝑛𝑠𝑒𝑡 will also be left out of the forecasting
model. The reasoning behind this is described in sections 2.3 and 2.4, respectively. Next, the same
steps as for the descriptive model have to be taken. From this it is concluded that the best predic-
tion model also uses the data from 1951-2018. The trial and error procedure showed that a model
without the 𝑃𝐷𝑂𝐹𝑀 and 𝑃𝑟𝑒𝐹𝑀 variables will result in a better model. Also the 𝐴𝐷𝐷𝑇 will be left out.
This is because there are not enough years with thaw days before April 1st, which drastically de-
creases the amount of data points. Therefore, the final forecasting model consists of the variables:
𝑇𝑀𝑎𝑟 , 𝐴𝐷𝐷𝐹,𝐻𝑊𝑑𝑚𝑎𝑟 , 𝐶𝐶𝑀𝑎𝑟 and 𝐸𝑁𝑆𝑂𝐹𝑀. The gridsearch showed that the model performed best
with parameters: ℎ𝑖𝑑𝑑𝑒𝑛𝑙𝑎𝑦𝑒𝑟𝑠𝑖𝑧𝑒 = 15, 𝐹𝑘 = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐, 𝑎𝑙𝑝ℎ𝑎 = 2.5 ∗ 10−4. The RMSE is 5.98 and
the MAE is 4.83. The results are shown in figure 4.2

Figure 4.2: Observed and predicted breakup dates of forecasting model. The models shows that it works quite good for breakup
dates between 35 and 45 days after equinox, but a bad performance for relatively early or late breakup dates..

The first thing that it noticed when looking at figure 4.2 is the fact that the model performs relatively
well for breakup dates between 36 and 46 days after equinox. However, themodel predicts rather poorly
for breakup dates relatively early or late in the year. The observed breakup dates range between 30
and 60 days after equinox while the predicted breakup dates range between 36 and 46 days. This
could be attributed to the fact that in the forecasting model, apart from the variables with data after
april 1st, many other very important variables, such as the ice thickness, thaw onset and ADDT were
excluded. Because of this, it can be expected that the model had great difficulties finding significant
relations between the remaining variables and the breakup dates. Therefore, the model could have
trained itself to make predictions around the mean of the observed breakup dates in order to result in
the lowest RMSE and MAE. To check whether this assumption is right. A horizontal line indicating the
mean observed breakup date (42.96 days after equinox) is drawn.

Figure 4.3 confirms that most predictions were made very close to the mean observed breakup
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date. In fact, 51 out of 68 predictions (75%) were made within 2 days of the mean observed breakup
date. Although it seems plausible that this is the reason for the model’s poor performance, definite
prove of this assumption can not be given since an ANN does not give insight in its decision making
process.

Figure 4.3: Observed and predicted breakup dates of forecasting model. The figure shows that most predictions were made very
close tot the mean observed breakup date. This could indicate that the model assigned a heavy weight to the mean observed
breakup date and lighter weights to the explanatory variables.



5
Conclusion and recommendations

The main objective of this report was to conduct an artificial neural network model that predicts the ice
breakup dates of the Tanaka river based on climate related variables. In order to do so, first, previous
research of Van Asselt, 2020 and Terwogt, 2021 was extensively analysed. This analysis concluded
that the variables related to ice thickness, discharge and temperature needed to be revisited. The
analysis on the ice thickness variables showed that using only one ice thickness variable gives a better
representation of its influence than when multiple ice thickness variables are used in the same model.
The maximum ice thickness has been pointed out by Beltaos and Bonsal, 2021 as the most impor-
tant ice thickness variable. However, due to inconsistent measurements, this variable was unreliable
to use. The discharge variable is noted as a variable which is strongly correlated with the breakup
dates, but since discharge measurements are only made after the ice breakup, it could not be used in
the forecasting model. Concerning temperature data, a new variable was introduced. The thaw onset
date showed great potential, since it had a relatively high correlation with the breakup dates. These
variables, including the ones introduced by Van Asselt, 2020 and Terwogt, 2021 were then used to
develop two models. The descriptive model, which was not bounded by the betting deadline of April
1st, showed promising results. A RMSE and MAE of 2.73 and 2.28 days, respectively, were obtained.
This is a slight improvement in respect to the random forest regression model made by Terwogt, 2021
(RMSE of 2.91 and MAE of 2.26). It is concluded that making use of ANN instead of random forest had
more influence on the results than the use of new variables.

The forecasting model, bounded by the deadline of April 1st showed far less performance than the
descriptive model. The RMSE of 5.98 days was exactly equal to the RMSE found by Terwogt, 2021.
The MAE of the forecasting model was 4.83 days, a slight improvement of Terwogt’s forecasting model
(MAE = 5.07). This poor performance is mainly due to the decrease in variables that could be used.
Variables that showed high potential such as the ice thickness, ADDT, and the thaw onset date had to
be excluded because of the small amount of measurement points. Because of the absence of these
high performing variables, the model probably trained itself to give predictions around the mean of the
observed breakup dates. However, definite prove of this assumption can not be given since an ANN
does not give insight in its decision making process.

The main problem with the forecasting model is that there are not enough relevant input variables.
This problem is due to the small and inconsistent sample sizes of some relevant variables. For future
research, it would be wise to investigate a way of implementing variables with different sizes into the
same model. Keras (Chollet, 2015) provides ways of doing this. This way more relevant variables can
be added into the same model. Another interesting approach would be to take the models and findings
of this and previous research and use it for more serious problems, such as predicting flood and ice
jam risks.
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(a) Heatwave days April (b) Heatwave days May

(c) Cloud coverage May (d) Discharge April

(e) ENSO index (f) PDO index

(g) Precipitation (Feb, Mar Apr) (h) Ice thickness Feb 20th



27

(a) Ice thickness Mar 1st (b) Ice thickness Mar 15th

(c) Ice thickness Apr 1st

Figure A.1: OLS fit of different variables with break up dates
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Variable matrices
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Figure B.1
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Figure B.2
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Figure B.3



C
Results of trial and error process

Model without RMSE MAE
𝑇𝑀𝑎𝑟 3.91 3.21
𝑇𝐴𝑝𝑟 3.83 3.24
𝑇𝑀𝑎𝑦 3.97 3.22
𝐴𝐷𝐷𝑇 3.70 2.95
𝐴𝐷𝐷𝐹 3.69 2.87
𝐻𝑊𝑑𝑚𝑎𝑟 4.07 3.16
𝐻𝑊𝑑𝑎𝑝𝑟 4.09 3.41
𝐻𝑊𝑑𝑚𝑎𝑦 3.66 2.99
𝐶𝐶𝑚𝑎𝑟 3.58 2.99
𝐶𝐶𝑎𝑝𝑟 3.88 3.18
𝐶𝐶𝑚𝑎𝑦 3.74 3.10

𝐸𝑁𝑆𝑂𝐹𝑀𝐴𝑀 3.84 3.24
𝑃𝐷𝑂𝐹𝑀𝐴𝑀 3.91 3.05
𝑇ℎ𝑎𝑤𝑂𝑛𝑠𝑒𝑡 4.40 3.48
𝑃𝑟𝑒𝐹𝑀𝐴 3.47 2.90

Table C.1
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