Exam Q1 R

CEGM1000 Modelling, Uncertainty and Data for Engineers EXAM 24/25 \cdot 4 opgaven \cdot 100.0 punten

Propagation of Uncertainty #42674783

20 ptn · Laatst bijgewerkt 15 feb, 16:35

A speed detection system is used to monitor the speed of vehicles in a traffic flow. The speed of the vehicle can then be determined by analyzing the Doppler shift in the returned signal, which depends on the propagation speed c of the signal in the air. This propagation speed varies with air temperature T and humidity H as:

$$c = 331.3 + 0.6T + 0.0124H^2$$

where c is in m/s, T is in °C, and H is in g/m³.

Both temperature and humidity are random variables due to environmental fluctuations.

We are interested in the precision of the propagation speed, where it is known that:

$$\mu T=25$$
°C, $\sigma_T=3$ °C

$$\mu_H=10$$
 g/m³, $\sigma_H=2$ g/m³.

$$Cov(T, H) = 0$$

Tekst

Approximate the standard deviation of the propagation speed (give your answer to 2 decimal places). Show how you arrived at your answer.

8 ptn · Open · 1 3/5 Pagina

Correct terms:

$$rac{dc}{dT}=0.6$$
 and $rac{dc}{dH}=0.0248H$

Correct implementation of propagation:

$$\sigma_c = 0.6^2 \cdot \sigma_T^2 + \left(0.0248 \cdot \mu_H\right)^2 \sigma_H^2 + 0 = 3.49$$

Final solution: 2 ptn

$$\sigma_c = \sqrt{3.49} = 1.87$$

Mistake in terms -1 ptn

mistake in implementation -2 ptn

Mistake in final solution -1 ptn

Would it have more impact to reduce σ_H or σ_T , in order to reduce σ_C ? Explain your answer.

4 ptn · Open · 3/10 Pagina

Correct selection of Sigma_T 2 ptn

Explanation of propagation law being used with reference to the squared values 0.6^2 and

0.248^2 ptn

4 ptn

2

You find that for the humidity sensor, only 5 measurements were taken during the day. In contrast, the temperature sensor measured the temperature every hour.

Please answer the following questions, you only need to write 1-2 sentences for each:

- Which source of uncertainty affects both of them?
- Which source of uncertainty affects the humidity sensor to a larger degree than the temperature sensor?
- Describe how and if these sources of uncertainty can be reduced.

5 ptn · Open · 1/2 Pagina

Both: Aleatoric, explanation is also ok if there is no name

1 pt

Humidity sensor: Epistemic, explanation is also ok if there is no name

1 pt

Aleatoric cannot be mitigated as it is inherent in nature, but model can be modified better represent the natural phenomenon

1,5
ptn

Epistemic: Gather more data, improve data gathering process or get better equipment

1,5 ptn

-0,5 ptn

Which of the following is **not true** about propagation of uncertainty?

3 ptn · Meerkeuzevraag · 3 alternatieven

- Independent variables always lead to additive variances.
- Covariance terms are zero when variables are uncorrelated.
- The propagation of uncertainty is only applicable to linear functions.

Feedback

This is false. Uncertainty propagation can apply to non-linear functions as well. In fact, there are well-established methods (e.g., using Taylor series expansions) to propagate uncertainties through non-linear functions.

Feedback

Feedback als de vraag juist is beantwoord

Feedback als de vraag gedeeltelijk juist is beantwoord

Observation Theory #42674725

27 ptn · Laatst bijgewerkt 11 feb, 13:45

A scientist is studying the decay of a radioactive isotope in groundwater to estimate its half-life. The concentration of the isotope C(t) at time t follows the exponential decay law:

$$C(t) = C_0 e^{-\lambda t}$$

where:

- C_0 is the initial concentration of the isotope at t=0,
- lacksquare λ is the decay constant,
- t is the time since the sample was collected.
- The scientist measures the concentrations C_i at 6 different times, creating 6 observations with standard deviation σ_c . To simplify the analysis, the geoscientist linearizes the equation by taking the natural logarithm:

$$\ln(C_i) = \ln(C_0) - \lambda t_i.$$

Where the following is defined:

$${Y}_i = \ln({C}_i), \quad a = \ln({C}_0), \quad b = -\lambda.$$

Tekst

Give the <u>functional model</u> in the form $\mathbb{E}(\mathbf{Y}) = A\mathbf{x}$ and specifying the following:

- \blacksquare Provide the sizes and shapes of the A matrix and vectors \mathbf{Y} and \mathbf{x} .
- The redundancy of the system.

6 ptn · Open · 1/2 Pagina

correct A and shape 2 ptn

correct x and size 1 pt

redundancy 6-2=4 2 ptn

correct y and size 1 pt

What happens to a model and errors when the redundance	q=	0?
Multiple answers possible.		

4 ptn \cdot Meerkeuzevraag \cdot 5 alternatieven

The system cannot be solved, because there is no solution

The model becomes statistically reliable for prediction, eliminating the impact of noise

The model perfectly fits the data, and the residuals become 0

The model uses all available data, but cannot validate the parameters due to a lack of redundancy.

Feedback

Feedback als de vraag juist is beantwoord

Feedback als de vraag gedeeltelijk juist is beantwoord

Feedback als de vraag onjuist is beantwoord

Assume that measurement 3 contains a bias of size ∇ , making it an outlier. Formulate the alternative hypothesis by modifying the functional model to account for this bias.

4 ptn · Open · 3/5 Pagina

correctly expanding A and x to include bias

4 ptn

For the propagation of uncertainty, we define the non-linear variance propagation law for $X=q\left(Y\right)$ as:

$$\sigma_X^2 = \left(rac{\partial q}{\partial Y}
ight)_0^2 \sigma_Y^2$$

Considering the transformed observations:

$${Y}_i = \ln({C}_i)$$

Derive the stochastic model.

4 ptn · Open · 7/10 Pagina

correct partial derivative 2 ptn correct application of prop law 2 ptn small mistake -1 ptn

To decide between the null hypothesis H_0 and the alternative hypothesis H_a , the scientist conducts a hypothesis test. The test statistic T_q for the hypothesis test has already been computed as:

$$T_{q} = 6.81$$

Answer the following questions:

- What type of hypothesis test should the scientist use in this scenario?
- \blacksquare Using a false alarm probability of 5% , compute and demonstrate if the Null hypothesis is accepted or rejected

6 ptn · Open · Nieuwe pagina · 3/5 Pagina

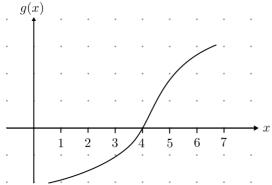
GLRT	2 ptn
q=1	1 pt
k = 3.84	1 pt
reject H_0	2 ptn

What does **Best Linear Unbiased Estimator (BLUE)** aim to minimize in a linear regression model?

3 ptn · Meerkeuzevraag · 4 alternatieven

- The sum of squared residuals.
- The variance of the estimator.
- The observation noise.
- The sum of absolute residuals.

Feedback


Feedback als de vraag juist is beantwoord

Feedback als de vraag gedeeltelijk juist is beantwoord

Numerical Modelling #41774685

23 ptn · Laatst bijgewerkt 10 feb, 19:33

Below you can see a graphical representation for a given function $g\left(x\right)$. We use the Newton-Raphson method to approximate the root of the function $g\left(x\right)=0$

Tekst

Assuming an initial estimation of x=5, indicate the second estimation of the value of x. Provide a sketch in the answer box below (and the next page) to demonstrate your estimated value of x.

Note: you don't need to make explicit calculations, as you can solve this graphically. Your sketch should clearly indicate how you arrived at your estimated value of x. Markings on the figure above will not be graded.

6 ptn \cdot Open \cdot 1 2/5 Pagina

Drawing the tangent line at $x_0=5$, ensuring it properly touches the curve and extends to the	3
x-axis	ptn
finding the intersection with the x-axis and estimating $x_1 pprox 3.5$	3 ptn
roughly estimates but its noticeably off (e.g. 3 or below or 4 and above)	2 ptn
sloppy graph without clear intention	-1 ptn
tangent line incorrectly placed	-1 ptn
wrong estimation of x_0 or x_1	-1 ptn

Derive the Backward Difference expression second order accurate of the first derivative around the point x_i . Assume that the distance between points is equidistant.

8 ptn · Open · 9/10 Pagina

We start with the Taylor series expansion of f(x) around x_i :

$$f(x) = f(x_i) + (x-x_i)f'(x_i) + rac{(x-x_i)^2}{2!}\,f^{''}(x_i) + rac{(x-x_i)^3}{3!}\,f^{'''}(x_i) + \cdots$$

Expanding for $f(x_{i-1})$, gives equation (1):

$$f(x_{i-1}) = f(x_i) - \Delta x f'(x_i) + rac{\Delta x^2}{2} f^{''}(x_i) - rac{\Delta x^3}{3!} \, f^{'''}(x_i) + \ldots$$

Expanding for $f(x_{i-2})$, gives equation (2):

$$f(x_{i-2}) = f(x_i) - 2\Delta x f'(x_i) + rac{4\Delta x^2}{2} f''(x_i) - rac{8\Delta x^3}{3!} f'''(x_i) + \dots$$
 8 ptn

Now, subtract Equation (2) - $4 \times$ Equation (1):

$$-4f(x_{i-1}) + f(x_{i-2}) = -3f(x_i) + 2\Delta x f'(x_i) + O(\Delta x^3)$$

Solving for $f'(x_i)$:

$$f'(x_i) = rac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2\Delta x} + O(\Delta x^2)$$

Correctly expands series expansion for both $f\left(x_{\{i-1\}}
ight), f\left(x_{\{i-2\}}
ight)$

Correctly sets up Backwards difference. Recognises the need to subtract the equations 3 ptn

Correct Final Backward Difference Formula
$$rac{3f(x_i)-4f(x_{i-1})+f(x_{i-2})}{2\Delta x}+O(\Delta x^2)$$
 2 ptn

Minor algebraic mistakes, but the overall structure is correct.

missing key terms -1 ptn

small error -1 ptn

3 ptn

-1 ptn

Select the correct classification of the following equation:

$$\frac{d^3y}{dx^3} - x\,\frac{d^2y}{dx^2} + y = 0$$

3 ptn \cdot Meerkeuzevraag \cdot 8 alternatieven

- First-order and linear ODE
- Third-order and linear ODE
- First-order and non-linear ODE
- Third-order and non-linear ODE
- First-order linear PDE
- Third- order linear PDE
- First- order and non-linear PDE
- O Third- order and non-linear PDE

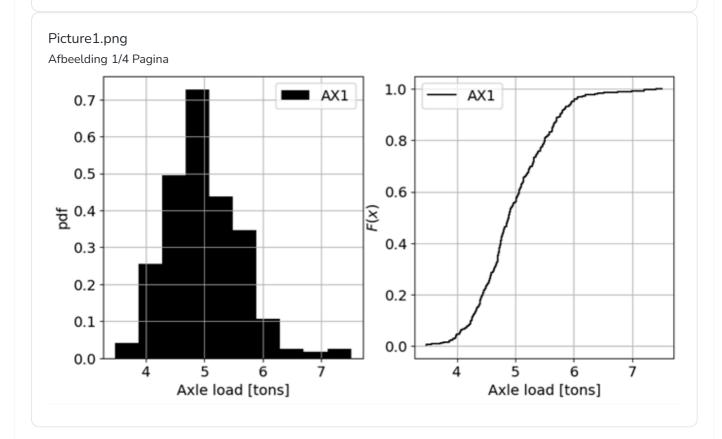
Feedback

Feedback als de vraag juist is beantwoord

Feedback als de vraag gedeeltelijk juist is beantwoord

Multi stage methods (select all that correctly complete the sentence):				
3 ptn \cdot Meerkeuzevraag \cdot 4 alternatieven				
require initialisation from another method				
do not require initialisation from another method				
allow choosing large steps				
can only be used with small steps				
Feedback				
Feedback als de vraag juist is beantwoord				
Feedback als de vraag gedeeltelijk juist is beantwoord				
Feedback als de vraag onjuist is beantwoord				
3 ptn · Meerkeuzevraag · 4 alternatieven Neumann Dirichlet Robin Mixed				
Feedback				
Feedback als de vraag juist is beantwoord				
Feedback als de vraag gedeeltelijk juist is beantwoord				
Feedback als de vraag onjuist is beantwoord				

Probability #43618152


30 ptn · Laatst bijgewerkt 3 feb, 16:37

You are the designer of a bridge and want to study the traffic loads that it will face. You have measurements of axle loads in a nearby road that will connect to the bridge in the future.

Axle loads are defined as the force transmitted by the wheels from the first axle to the ground in tons. You are focusing on trucks with 4 axles as they are the heavier vehicles in that road and, thus, will transmit higher axle loads to the bridge. Then, you have four axle loads per vehicle, denoted here as AX1, AX2, AX3 and AX4.

You start studying the first axle load, AX1. You plot the empirical CDF and PDF of the data, as shown in the image below.

Tekst

What would be the most appropriate parametric distribution for AX1?

3 ptn · Meerkeuzevraag · 3 alternatieven

Gaussian

Exponential

Uniform

Feedback

Feedback als de vraag juist is beantwoord

Feedback als de vraag gedeeltelijk juist is beantwoord

Feedback als de vraag onjuist is beantwoord

Justify briefly your answer with at least one reason.

3 ptn · Open · Nieuwe pagina · 2/5 Pagina

Modelantwoord

Gaussian because the pdf has a bell shape, approx. symmetric distribution. Exponential PDF would have an exponential decay having the maximum in 0.

Partial credit if Uniform is justified by saying that the CDF is approximately linear (not fully correct).

Gaussian, bell shape 3 ptn Uniform, linear CDF (Not fully correct) 1,5 ptn Some knowledge on the shape of some of the mentioned distributions 1 pt Vague explanation, lack of reasons why specifically Gaussian is a good fit. -1 ptn Small error such as uniform bounded in 0

Using the plot above, compute approximately P(AX1 > 5).

3 ptn · Open · 1/2 Pagina

Modelantwoord

$$P(AX1 > 5) = 1 - P(AX1 \le 5) = 1 - 0.6 = 0.4$$

Fully correct 3 ptn $P(AX1 > 5) = 1 - P(AX1 \le 5)$ 1,5 ptn Read from the adequate graph and finish computation 1,5 ptn Computation error -0,5 ptn

-0,5 ptn

Another colleague is studying AX4. They have decided to fit a Gumbel distribution to the data of AX4. To assess the goodness of fit of the Gumbel distribution, they are using the Kolmogorov-Smirnov test.

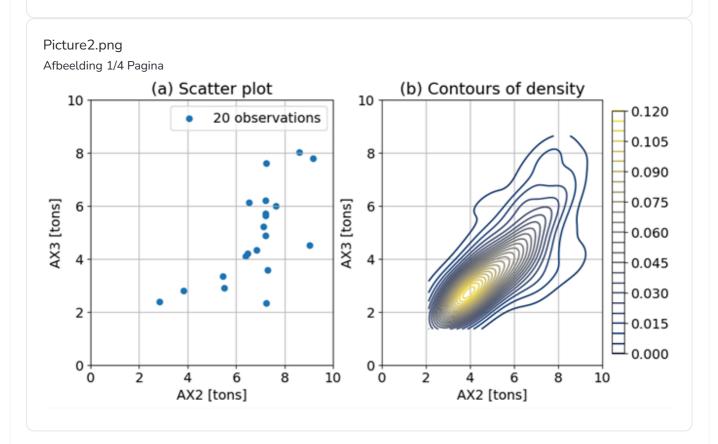
Remember that the null hypothesis of the test is that the observations are coming from the fitted distribution and, thus, the tested distribution is a reasonable model for them. They have obtained a **statistic** = **0.06** and a **p-value** = **0.23** and asked for your help to interpret it considering a **significance level of 0.05**.

Is the Gumbel distribution a reasonable distribution for AX4 based on Kolmogorov-Smirnov test?

State yes or no, then briefly explain your reasoning using the quantitative results provided above.

6 ptn · Open · 3/4 Pagina

Modelantwoord


Yes, the p-value is the probability of the null hypothesis being true. If the p-value is higher than the significance, then the null hypothesis is accepted. Here 0.23 > 0.05, so we can accept that the observations come from a Gumbel distribution.

Fully correct 6 ptn

Recognition of what an hypothesis test is (hypothesis, statistic, p-value) but wrong application. 2 ptn

The multivariate probability team is working on the relationship between AX2 and AX3 and start by plotting some of the observations and the joint PDF as shown in the figure below.

Tekst

Using the plots above, compute $P(AX2 \le 6|AX3 \le 4)$

4 ptn · Open · 1/2 Pagina

Modelantwoord

$$P(AX2 \le 6 \mid AX3 \le 4) = 4/6 = 0.67$$

Using Bayes' theorem also possible

Fully correct 4 ptn

Right numerator (mixing AND with conditional probability)

1 pt

Using the plots above, compute $P(AX2>8\cap X3>6)$

4 ptn · Open · 1/2 Pagina

Modelantwoord

$$P(AX2 > 8 \land AX3 > 6) = 2/20 = 0.1$$

0 grade if you are doing the OR probability: 6/20

Fully correct 4 ptn

Counting error/Minor error

-1 ptn

The multivariate probability team has decided to use a multivariate Gaussian distribution to model the relationship between AX1, AX2, AX3 and AX4. They have obtained the following covariance matrix.

$$\Sigma = \begin{pmatrix} 0.40 & 0.76 & 0.37 & 0.35 \\ 0.76 & 3.60 & 2.30 & 2.01 \\ 0.37 & 2.30 & 2.4 & 2.21 \\ 0.35 & 2.01 & 2.21 & 2.30 \end{pmatrix}$$

Tekst

What is the variable with the highest variability?
3 ptn · Meerkeuzevraag · 4 alternatieven
Modelantwoord Higher values of the variance (diagonal of the covariance matrix) imply higher variability of the random variable. Note that all the variables have the same dimensions.
O AX1
AX2
O AX3
O AX4
Feedback
Feedback als de vraag juist is beantwoord
Feedback als de vraag gedeeltelijk juist is beantwoord
Feedback als de vraag onjuist is beantwoord

What is the pair of variables with the highest correlation?

4 ptn · Meerkeuzevraag · 4 alternatieven

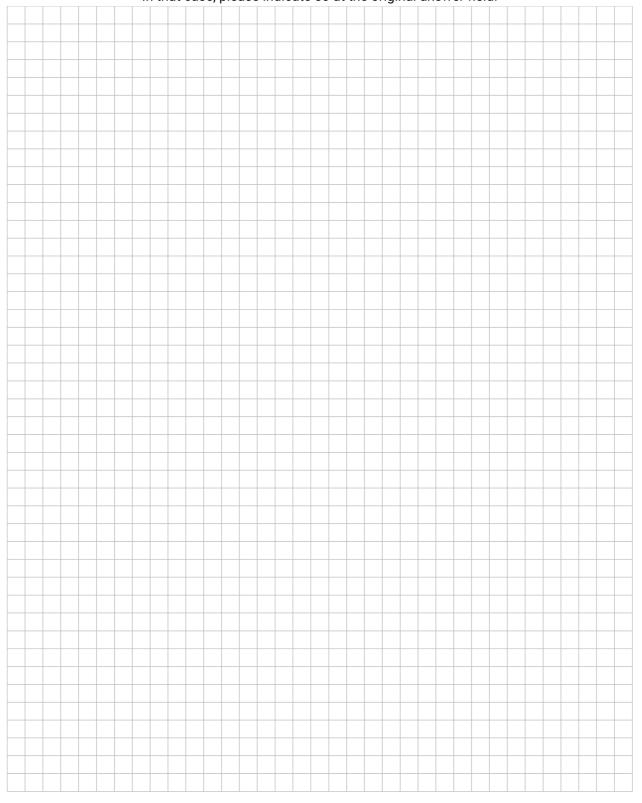
Modelantwoord

The off-diagonal values of the covariance matrix are the covariances. We can calculate the correlation as function of the covariance as

$$\begin{split} &\rho(AX1,AX2) = Cov(AX1,AX2)/(\sigma_1\sigma_2) = 0.76/(\sqrt{0.4}\sqrt{3.6}) = 0.63\\ &\rho(AX2,AX3) = 2.3/(\sqrt{2.4}\sqrt{3.6}) = 0.78\\ &\rho(AX1,AX4) = 0.35/(\sqrt{0.4}\sqrt{2.3}) = 0.36\\ &\rho(AX3,AX4) = 2.21/(\sqrt{2.4}\sqrt{2.3}) = 0.94 \end{split}$$

- AX1-AX2
- AX2-AX3
- AX1-AX4
- AX3-AX4

Feedback


Feedback als de vraag juist is beantwoord

Feedback als de vraag gedeeltelijk juist is beantwoord

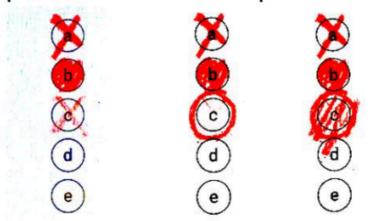
3332868 (6)_Page_24.png

Afbeelding 1 Pagina

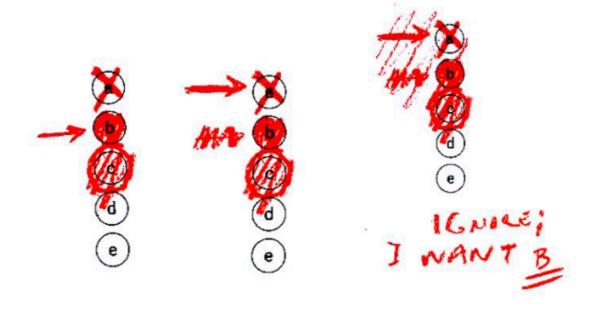
Use the grid below if you run out of space for any exercise. In that case, please indicate so at the original answer field.

The table below gives an overview of the questions to help you plan your time during the exam.

No.	Topic	Number of sub-parts	Points
1	Propagation of Uncertainty	4	20
2	Observation Theory	6	27
3	Numerical Modelling	5	23
4	Probability	8	30


Tekst

In case you want to correct your answer for a multiple choice question put an ARROW in front of your final answer. If you also make a mistake with your arrow, write a clear message on the page. Here are a few examples:


Tekst

Screenshot 2025-01-19 223302.png Afbeelding 2/5 Pagina

Examples of UNCLEAR multiple choice response:

Examples of CLEAR multiple choice response:

Answer: B Answer: A Answer: B

Multiple choice examples.